DocumentCode :
966610
Title :
Numerical test of stability of large sparse matrices and dynamical systems
Author :
Zakian, V. ; Papaconstantinou, C.
Author_Institution :
University of Manchester Institute of Science & Technology, Manchester, UK
Volume :
10
Issue :
23
fYear :
1974
Firstpage :
503
Lastpage :
504
Abstract :
The stability of an n-square complex matrix A is determined by the number â = max {Re (a1)}, where the a1 are the eigenvalues. A practical numerical technique is developed for computing the number â of any normal matrix (AA* = A*A). When applied to an arbitrary matrix, the technique yields a number not less than â, and hence, if the number is negative, the matrix is stable. The technique is particularly efficient when A is a large sparse matrix.
Keywords :
eigenvalues and eigenfunctions; matrix algebra; numerical methods; stability; computing; dynamical systems; eigenvalues; large sparse matrices; numerical test of stability;
fLanguage :
English
Journal_Title :
Electronics Letters
Publisher :
iet
ISSN :
0013-5194
Type :
jour
DOI :
10.1049/el:19740400
Filename :
4245288
Link To Document :
بازگشت