DocumentCode :
966656
Title :
Interference-Normalized Least Mean Square Algorithm
Author :
Valin, Jean-Marc ; Collings, Iain B.
Author_Institution :
CSIRO ICT Centre, Marsfield
Volume :
14
Issue :
12
fYear :
2007
Firstpage :
988
Lastpage :
991
Abstract :
An interference-normalized least mean square (INLMS) algorithm for robust adaptive filtering is proposed. The INLMS algorithm extends the gradient-adaptive learning rate approach to the case where the signals are nonstationary. In particular, we show that the INLMS algorithm can work even for highly nonstationary interference signals, where previous gradient-adaptive learning rate algorithms fail.
Keywords :
adaptive filters; electromagnetic interference; least mean squares methods; gradient-adaptive learning rate; interference-normalized least mean square algorithm; nonstationary interference signals; robust adaptive filtering; Adaptive filters; Additives; Convergence; Echo cancellers; Filtering algorithms; Helium; Interference; Least mean square algorithms; Robustness; Stochastic processes; Adaptive filtering; gradient-adaptive learning rate; normalized least mean square (NLMS) algorithm;
fLanguage :
English
Journal_Title :
Signal Processing Letters, IEEE
Publisher :
ieee
ISSN :
1070-9908
Type :
jour
DOI :
10.1109/LSP.2007.908017
Filename :
4378265
Link To Document :
بازگشت