DocumentCode :
967785
Title :
Theory of negative magnetostriction in grain oriented 3% SiFe for various inductions and applied stresses
Author :
Allia, P. ; Ferro-Milone, A. ; Montalenti, G. ; Soardo, G.P. ; Vinai, F.
Author_Institution :
IEEE TMAG
Volume :
14
Issue :
5
fYear :
1978
fDate :
9/1/1978 12:00:00 AM
Firstpage :
362
Lastpage :
364
Abstract :
A theoretical model is presented to quantitatively account for the magnetostrictive behavior of grain oriented 3% SiFe laminations as a function of induction B and of applied tensile stress. Static magnetostriction measurements on high permeability longitudinal laminations show that the elongations Δ1/1 are negative for all B values, except close to saturation, reaching a deep minimum peak for B \\cong 1.75 T. The Δ1/1 and in particular the peak absolute values are found to strongly decrease upon application of longitudinal stresses (up to 12 kg/mm2). In the model the behavior is considered of 90° spike domains, which characterize the surface of grains whose easy axis makes an angle ϑ with the lamination plane, to reduce the demagnetizing field energy. By minimizing the grain magnetic energies, the 90° domain volume is expressed as a function of the magnetization state. In particular it is found that spikes tend to disappear above a critical field which depends on the grain angle ϑ. The contributions to the magnetostrictive elongation deriving from these 90° domain volumes are then averaged over the actual distribution of grain orientations for the investigated g.o. material, and the theoretical curve is found to be in good agreement with the experimental one. The effect of stress is also considered, and it is shown that under tension the total 90° domain volume is strongly reduced, thus accounting, again in good agreement with the experiments, for the decrease of the negative magnetostriction peak amplitude.
Keywords :
Magnetostriction; Mechanical factors; Steels; Demagnetization; Lamination; Magnetic domains; Magnetic materials; Magnetostriction; Particle measurements; Permeability measurement; Saturation magnetization; Stress measurement; Tensile stress;
fLanguage :
English
Journal_Title :
Magnetics, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9464
Type :
jour
DOI :
10.1109/TMAG.1978.1059971
Filename :
1059971
Link To Document :
بازگشت