• DocumentCode
    969167
  • Title

    Improving River Flood Extent Delineation From Synthetic Aperture Radar Using Airborne Laser Altimetry

  • Author

    Mason, David C. ; Horritt, Matthew S. ; Amico, Johanna T Dall ; Scott, Tania R. ; Bates, Paul D.

  • Author_Institution
    Reading Univ., Reading
  • Volume
    45
  • Issue
    12
  • fYear
    2007
  • Firstpage
    3932
  • Lastpage
    3943
  • Abstract
    Flood extent maps that are derived from synthetic aperture radar (SAR) images provide spatially distributed data for validating hydraulic models of river flood flow. The accuracy of such maps is reduced by a number of factors, including variation in backscatter from the different land cover types that are adjacent to the flood, changes in returns from the water surface that are caused by different meteorological conditions, and the presence of emergent vegetation. This paper describes how improved accuracy can be achieved by modifying an existing flood extent delineation algorithm to use airborne laser altimetry [light detection and ranging (lidar)] as well as SAR data. The lidar data provide an additional constraint that water line heights should vary smoothly along the flooded reach. The method was tested on a SAR image of a flood for which contemporaneous aerial photography existed, together with lidar data of the un flooded reach. The water line heights of the SAR flood extent that was conditioned on both SAR and lidar data matched the corresponding heights from the aerial photograph water line significantly more closely than those from the SAR flood extent that was conditioned only on SAR data. For water line heights in areas of low slope and vegetation, the root-mean-square error on the height differences reduced from 221.1 cm for the latter case to 55.5 cm for the former.
  • Keywords
    airborne radar; floods; geophysical fluid dynamics; hydrological techniques; optical radar; remote sensing by laser beam; remote sensing by radar; rivers; synthetic aperture radar; terrain mapping; topography (Earth); vegetation; SAR images; aerial photograph water line; airborne laser altimetry; flood extent delineation algorithm; flood extent maps; hydraulic models; lidar; light detection and ranging; river flood extent delineation; river flood flow; synthetic aperture radar; vegetation; water line height; Backscatter; Floods; Land surface; Laser radar; Meteorology; Photography; Rivers; Synthetic aperture radar; Testing; Vegetation mapping; Data fusion; hydrology; lidar; snake;
  • fLanguage
    English
  • Journal_Title
    Geoscience and Remote Sensing, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0196-2892
  • Type

    jour

  • DOI
    10.1109/TGRS.2007.901032
  • Filename
    4378540