• DocumentCode
    971100
  • Title

    An EnestrÖm-Kakeya Theorem for Hermitian Polynomial Matrices

  • Author

    Dirr, Gunther ; Wimmer, Harald K.

  • Author_Institution
    Univ. of Wurzburg, Wurzburg
  • Volume
    52
  • Issue
    11
  • fYear
    2007
  • Firstpage
    2151
  • Lastpage
    2153
  • Abstract
    We extend the Enestroumlm-Kakeya theorem and its refinement by Hurwitz to polynomial matrices with positive semidefinite coefficients. We determine an annular region containing the zeros of . A stability result for systems of linear difference equations is given as an application.
  • Keywords
    Hermitian matrices; difference equations; polynomial matrices; Enestrom-Kakeya theorem; Hermitian polynomial matrices; annular region; linear difference equations; positive semidefinite coefficients; Asymptotic stability; Difference equations; Discrete wavelet transforms; Eigenvalues and eigenfunctions; Filters; Finite wordlength effects; Polynomials; Stability analysis; Transformers; Wavelet analysis; Block companion matrix; EnestrÖm-Kakeya theorem; polynomial matrices; root location; system of difference equations; zeros of polynomials;
  • fLanguage
    English
  • Journal_Title
    Automatic Control, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9286
  • Type

    jour

  • DOI
    10.1109/TAC.2007.908340
  • Filename
    4380500