• DocumentCode
    971248
  • Title

    Permanent magnetic materials with low reversible temperature coefficient

  • Author

    Martis, R.J.J. ; Gupta, Nila ; Sankar, S.G. ; Rao, V.U.S.

  • Author_Institution
    University of Pittsburgh, Pittsburgh, PA.
  • Volume
    15
  • Issue
    2
  • fYear
    1979
  • fDate
    3/1/1979 12:00:00 AM
  • Firstpage
    948
  • Lastpage
    950
  • Abstract
    Permanent magnets made from SmCo5exhibit negative reversible change in magnetization with increasing temperature, typically of the order of 0.04% per deg C between -100 and +200°C. For certain special applications in precision instruments such as gyros and accelerometers, it is highly desirable to improve this property. Earlier studies have shown that ternaries of the composition RxSm1-xCo5(where R = Gd, Ho, Er, or Dy and x is nearly 0.4) exhibit improved temperature compensation. A systematic investigation of the temperature coefficients of magnetization of a number of quaternaries in the temperature range 100-400 K has been undertaken. The effect of variation of the cobalt concentration on the temperature compensation of one typical system has also been examined. The results indicate that good temperature compensated magnets can be synthesized with composition Sm0.6Gd0.3DY0.1Co5(α = 0.0056 at 200-300 K; 0.002 at 300-350 K and ∼0 at 350-400 K). Slight variation of cobalt concentration does not have significant effects on the temperature compensation. Lattice constants, saturation magnetization, and the theoretical energy products of a number of quaternaries are also reported.
  • Keywords
    Magnetic thermal factors; Permanent magnet materials; Accelerometers; Chemistry; Cobalt; Erbium; Instruments; Magnetic flux; Magnetic materials; Magnets; Saturation magnetization; Temperature distribution;
  • fLanguage
    English
  • Journal_Title
    Magnetics, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9464
  • Type

    jour

  • DOI
    10.1109/TMAG.1979.1060289
  • Filename
    1060289