Title :
3-GHz Silicon Photodiodes Integrated in a 0.18-
m CMOS Technology
Author :
Ciftcioglu, Berkehan ; Zhang, Jie ; Zhang, Lin ; Marciante, John R. ; Zuegel, Jonathan D. ; Sobolewski, Roman ; Wu, Hui
Author_Institution :
Dept. of Electr. & Comput. Eng., Univ. of Rochester, Rochester, NY
Abstract :
A new PIN photodiode (PD) structure with deep n-well (DNW) fabricated in an epitaxial substrate complementary metal-oxide-semiconductor (epi-CMOS) process is presented. The DNW buried inside the epitaxial layer intensifies the electric field deep inside the epi-layer significantly, and helps the electrons generated inside the epi-layer to drift faster to the cathode. Therefore, this new structure reduces the carrier transit time and enhances the PD bandwidth. A PD with an area of 70 times 70 mum2 fabricated in a 0.18-mum epi-CMOS achieves 3-dB bandwidth of 3.1 GHz in the small signal and 2.6 GHz in the large signal, both with a 15-V bias voltage and 850-nm optical illumination. The responsivity is measured 0.14 A/W, corresponding to a quantum efficiency of 20%, at low bias. The responsivity increases to 0.4 A/W or 58% quantum efficiency at 16.2-V bias in the avalanche mode.
Keywords :
CMOS integrated circuits; avalanche photodiodes; electron relaxation time; elemental semiconductors; integrated optics; optical fabrication; optical receivers; p-i-n photodiodes; semiconductor epitaxial layers; silicon; PIN photodiode structure; Si; avalanche mode; bandwidth 3.1 GHz; carrier transit time; complementary metal-oxide-semiconductor; deep n-well structure; efficiency 20 percent; efficiency 58 percent; electron generation; epi-CMOS technology; epitaxial substrate; optical illumination; quantum efficiency; silicon photodiodes; size 0.18 mum; voltage 15 V; voltage 16.2 V; wavelength 850 nm; Integrated optoelectronics; optoelectronic devices; p-i-n photodiodes (PDs); photodiodes (PDs); semiconductor devices;
Journal_Title :
Photonics Technology Letters, IEEE
DOI :
10.1109/LPT.2008.2006404