DocumentCode :
972016
Title :
Exponentially Converging NystrÖm Methods Applied to the Integral-Integrodifferential Equations of Oblique Scattering/Hybrid Wave Propagation in Presence of Composite Dielectric Cylinders of Arbitrary Cross Section
Author :
Tsalamengas, J.L.
Author_Institution :
Nat. Tech. Univ. of Athens, Athens
Volume :
55
Issue :
11
fYear :
2007
Firstpage :
3239
Lastpage :
3250
Abstract :
Systems of singular integral-integrodifferential equations are studied that pertain to 2-D oblique scattering and to hybrid-wave propagation in presence of a dielectric cylinder with arbitrarily shaped smooth boundary. These systems, having the tangential to the surface of the cylinder components of the electric and magnetic fields as the unknowns, are solved via fast, highly accurate algorithms that rely on the Nystrom method (NM). Because of our specialized treatment, the present solution technique has the following characteristics: (1) it fully accounts for the singular nature of the kernels, (2) it appears to converge exponentially, and (3) it yields simple closed-form expressions for all matrix elements. In addition, an extension of the analysis is presented to account for composite dielectric cylinders that contain arbitrarily shaped dielectric or conducting cylindrical inclusions. Numerical examples and case studies illustrate the simplicity, flexibility, and efficiency of the algorithms. Exhaustive comparisons with available results for several special cases serve to test the correctness of the implementation and bring to light the extremely high accuracy of our algorithms.
Keywords :
composite materials; dielectric bodies; electric fields; electromagnetic wave propagation; electromagnetic wave scattering; integro-differential equations; magnetic fields; 2-D oblique scattering; Nystrom method; composite dielectric cylinder; electric fields; hybrid wave propagation; magnetic fields; singular integral-integrodifferential equation; Argon; Closed-form solution; Dielectrics; Electromagnetic scattering; Engine cylinders; Integral equations; Kernel; Light scattering; Magnetic fields; Surface treatment; Electromagnetic scattering; NystrÖm method; integral equations;
fLanguage :
English
Journal_Title :
Antennas and Propagation, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-926X
Type :
jour
DOI :
10.1109/TAP.2007.908833
Filename :
4380588
Link To Document :
بازگشت