• DocumentCode
    972931
  • Title

    Statistical pulse compression

  • Author

    Robinson, Enders A.

  • Author_Institution
    University of Tulsa, Tulsa, OK, USA
  • Volume
    72
  • Issue
    10
  • fYear
    1984
  • Firstpage
    1276
  • Lastpage
    1289
  • Abstract
    The seismic method in petroleum exploration is an echo-location technique to detect interfaces between the subsurface sedimentary layers of the earth. The received seismic reflection record (field trace), in general, may be modeled as a linear time-varying (LTV) system. However, in order to make the problem tractable, we do not deal with the entire field trace as a single unit, but instead subdivide it into time gates. For any time gate on the trace, there is a corresponding vertical section of rock layers within the earth, such that the primary (direct) reflections from these layers all arrive within the gate. Each interface between layers is characterized by a local (or Fresnel) reflection coefficient, which physically must be less than unity in magnitude. Under the hypothesis that the vertical earth section has small reflection coefficients, then within the corresponding time gate the LTV model of the seismic field trace reduces to a linear time-invariant (LTI) system. This LTI system, known as the convolutional model of the seismic trace, says that the field trace is the convolution of a seismic wavelet with the reflection coefficient series. If, in addition, the reflection coefficient series is white, then all the spectral shape of the trace within the gate can be attributed to the seismic wavelet. Thus the inverse wavelet can be computed as the prediction error operator (for unit prediction distance) by the method of least squares. The convolution of this inverse wavelet with the field trace yields the desired reflection coefficients. This statistical pulse compression method, known as predictive deconvolution with unit prediction distance, is also called spike deconvolution. Alternatively, predictive deconvolution with greater prediction distance can be used, and it is known as gapped deconvolution. Other pulse compression methods used in seismic processing are signature deconvolution, wavelet processing, and minimum entropy deconvolution.
  • Keywords
    Convolution; Deconvolution; Earth; Entropy; Fresnel reflection; Least squares methods; Petroleum; Pulse compression methods; Spectral shape; Time varying systems;
  • fLanguage
    English
  • Journal_Title
    Proceedings of the IEEE
  • Publisher
    ieee
  • ISSN
    0018-9219
  • Type

    jour

  • DOI
    10.1109/PROC.1984.13017
  • Filename
    1457285