• DocumentCode
    974255
  • Title

    Impact of STI Effect on Flicker Noise in 0.13-μm RF nMOSFETs

  • Author

    Chan, Chih-Yuan ; Lin, Yu-Syuan ; Huang, Yen-Chun ; Hsu, Shawn S H ; Juang, Ying-Zong

  • Author_Institution
    Nat. Tsing Hua Univ., Hsinchu
  • Volume
    54
  • Issue
    12
  • fYear
    2007
  • Firstpage
    3383
  • Lastpage
    3392
  • Abstract
    This paper reports on the impact of shallow-trench isolation (STI) on flicker noise characteristics in 0.13-mum RF nMOSFETs. The drain noise current spectral density was measured in both triode and saturation regions for a more complete study. The devices with a relatively small finger width and a large finger number (W=1 mum/Nfinger=40 and W=5 mum/Nfinger=8) presented more pronounced generation-recombination (G-R) noise characteristics compared to those with W=10 mum/Nfinger=4. In addition, a wide noise level variation of more than one order of magnitude was associated with the more obvious G-R noise components. The observed trends can be explained by the nonuniform stress effect of STI and also the associated traps at the edge of the gate finger between STI and the active region. To further study the noise mechanism, the single-linger devices with different STI-to-gate distances [SA(SB)=0.6,1.2, and 10 mum] were investigated. The measured results provided a direct evidence of STI effect on flicker noise characteristics. The activation energy of the traps was extracted at various temperatures in a range from EC-0.397 to EC-0.54 eV. Moreover, the calculated standard deviation sigmadB showed a strong dependence of noise variation on device geometry (sigmadB=2.95 dB for W=1 mum/Nfinger=40 and sigmadB=1.54 dB for W=10 mum/Nfinger=4). The analysis suggests that the carrier number fluctuation model with the correlated mobility scattering is more suitable for the noise characteristics in these devices.
  • Keywords
    MOSFET; carrier mobility; flicker noise; isolation technology; semiconductor device models; semiconductor device noise; RF nMOSFET; carrier number fluctuation model; correlated mobility scattering; distance 0.6 mum; distance 1.2 mum; distance 10 mum; drain noise current spectral density; electron volt energy 0.397 eV to 0.54 eV; flicker noise; generation-recombination noise characteristics; nonuniform stress effect; shallow-trench isolation; single-linger devices; size 0.13 mum; 1f noise; Character generation; Current measurement; Density measurement; Fingers; MOSFETs; Noise generators; Noise level; Noise measurement; Radio frequency; Low-frequency noise; MOSFETs; shallow-trench isolation (STI); stress;
  • fLanguage
    English
  • Journal_Title
    Electron Devices, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9383
  • Type

    jour

  • DOI
    10.1109/TED.2007.908895
  • Filename
    4383017