DocumentCode :
974922
Title :
Fractal estimation using models on multiscale trees
Author :
Fieguth, Paul W. ; Willsky, Alan S.
Author_Institution :
Dept. of Electr. Eng. & Comput. Sci., MIT, Cambridge, MA, USA
Volume :
44
Issue :
5
fYear :
1996
fDate :
5/1/1996 12:00:00 AM
Firstpage :
1297
Lastpage :
1300
Abstract :
We estimate the Hurst parameter H of fractional Brownian motion (or, by extension, the fractal exponent φ of stochastic processes having 1/fφ-like spectra) by applying a multiresolution framework. This framework admits an efficient likelihood function evaluation, allowing us to compute the maximum likelihood estimate of this fractal parameter with relative ease. In addition to yielding results that compare well with other proposed methods, and in contrast with other approaches, our method is directly applicable with, at most, very simple modification in a variety of other contexts including fractal estimation given irregularly sampled data or nonstationary measurement noise and the estimation of fractal parameters for 2-D random fields
Keywords :
Brownian motion; fractals; maximum likelihood estimation; random noise; random processes; signal resolution; signal sampling; trees (mathematics); 2-D random fields; Hurst parameter; fractal estimation; fractal parameter; fractional Brownian motion; irregularly sampled data; likelihood function evaluation; maximum likelihood estimate; multiresolution framework; nonstationary measurement noise; stochastic processes; Brownian motion; Fractals; Maximum likelihood estimation; Motion estimation; Noise measurement; Parameter estimation; Signal processing algorithms; Stochastic processes; Wavelet coefficients; Yield estimation;
fLanguage :
English
Journal_Title :
Signal Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1053-587X
Type :
jour
DOI :
10.1109/78.502347
Filename :
502347
Link To Document :
بازگشت