DocumentCode :
977853
Title :
Enhanced kernel estimation technique for pattern classification
Author :
Lam, K.P. ; Horne, E.
Author_Institution :
Comput. Lab., Kent Univ., Canterbury, UK
Volume :
29
Issue :
24
fYear :
1993
Firstpage :
2130
Lastpage :
2131
Abstract :
Reports the application of a nonparametric density estimation technique, the generalised K-nearest-neighbour (K-NN) method, to a novel pattern classifier for binary images. In addition to offering an improved error rate performance over the fixed kernel method previously adopted, the method can be used to measure the inherent difficulty of a pattern classification problem because the nearest-neighbour error rate bounds the Bayes rate.
Keywords :
image recognition; parameter estimation; binary images; enhanced kernel estimation; error rate performance; generalised K-nearest-neighbour; image recognition; nearest-neighbour error rate; nonparametric density estimation; pattern classification;
fLanguage :
English
Journal_Title :
Electronics Letters
Publisher :
iet
ISSN :
0013-5194
Type :
jour
DOI :
10.1049/el:19931424
Filename :
247614
Link To Document :
بازگشت