• DocumentCode
    978995
  • Title

    Inherent ambiguities in recovering 3-D motion and structure from a noisy flow field

  • Author

    Adiv, Gilad

  • Author_Institution
    Dept. of Comput. & Inf. Sci., Massachusetts Univ., Amherst, MA, USA
  • Volume
    11
  • Issue
    5
  • fYear
    1989
  • fDate
    5/1/1989 12:00:00 AM
  • Firstpage
    477
  • Lastpage
    489
  • Abstract
    One of the major areas in research on dynamic scene analysis is recovering 3-D motion and structure from optical flow information. Two problems which may arise due to the presence of noise in the flow field are examined. First, motion parameters of the sensor or a rigidly moving object may be extremely difficult to estimate because there may exist a large set of significantly incorrect solutions which induce flow fields similar to the correct one. The second problem is in the decomposition of the environment into independently moving objects. Two such objects may induce optical flows which are compatible with the same motion parameters, and hence, there is no way to refute the hypothesis that these flows are generated by one rigid object. These ambiguities are inherent in the sense that they are algorithm-independent. Using a mathematical analysis, situations where these problems are likely to arise are characterized. A few examples demonstrate the conclusions. Constraints and parameters which can be recovered even in ambiguous situations are presented
  • Keywords
    computer vision; parameter estimation; 3D motion recovery; computer vision; dynamic scene analysis; optical flow information; structure recovery; Focusing; Image analysis; Image motion analysis; Layout; Mathematical analysis; Motion estimation; Optical computing; Optical noise; Optical sensors; Ultraviolet sources;
  • fLanguage
    English
  • Journal_Title
    Pattern Analysis and Machine Intelligence, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0162-8828
  • Type

    jour

  • DOI
    10.1109/34.24780
  • Filename
    24780