• DocumentCode
    979944
  • Title

    Cramer-Rao bounds for target parameters in space-based radar applications

  • Author

    Pillai, Unnikrishna S. ; Li, Ke Yong ; Himed, Braham

  • Volume
    44
  • Issue
    4
  • fYear
    2008
  • Firstpage
    1356
  • Lastpage
    1370
  • Abstract
    The Cramer-Rao (CR) bounds for target Doppler and power are presented when detecting targets using a space-based radar (SBR) platform. The target in noise-only case is considered first and the results are compared with those obtained for a centro-symmetric uniform linear pulse array. When clutter is also present, the effect of the Earth´s rotation and range foldover becomes significant; and they must be taken into consideration. The CR bounds are computed for target Doppler and power, and compared with their variance estimates obtained from simulation results corresponding to various airborne and SBR situations. From the simulation results, the Earth´s rotation together with range foldover significantly increase the CR bounds for both target Doppler and power. This is in agreement with other results that show the Earth´s rotation and range foldover together degrade the clutter suppression performance of adaptive processing algorithms. It is shown that when both the Earth´s rotation effect and range foldover effect are present in the data, target detection is difficult, and it is necessary to introduce waveform diversity into the transmit design to minimize the effect of clutter and other interference. In this context, using waveform diversity on transmit, it is possible to compensate the degradation in terms of the CR bounds and achieve performance close to the ideal case.
  • Keywords
    Doppler radar; airborne radar; object detection; radar clutter; radar detection; Cramer-Rao bounds; Earth rotation effect; adaptive processing algorithm; centro-symmetric uniform linear pulse array; clutter effect; range foldover effect; space-based radar application; target Doppler; target detection; waveform diversity; Chromium; Clutter; Computational modeling; Degradation; Doppler radar; Earth; Object detection; Radar applications; Radar detection; Spaceborne radar;
  • fLanguage
    English
  • Journal_Title
    Aerospace and Electronic Systems, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9251
  • Type

    jour

  • DOI
    10.1109/TAES.2008.4667714
  • Filename
    4667714