Title :
State-space dynamic neural network technique for high-speed IC applications: modeling and stability analysis
Author :
Cao, Yi ; Ding, Runtao ; Zhang, Qi-Jun
Author_Institution :
Dept. of Electron., Carleton Univ., Ottawa, Ont.
fDate :
6/1/2006 12:00:00 AM
Abstract :
We present a state-space dynamic neural network (SSDNN) method for modeling the transient behaviors of high-speed nonlinear circuits. The SSDNN technique extends the existing dynamic neural network (DNN) approaches into a more generalized and robust formulation. For the first time, stability analysis methods are presented for neural modeling of nonlinear microwave circuits. We derive the stability criteria for both the local stability and global stability of SSDNN models. Stability test matrices are formulated from SSDNN internal weight parameters. The proposed criteria can be conveniently applied to the stability verification of a trained SSDNN model using the eigenvalues of the test matrices. In addition, a new constrained training algorithm is introduced by formulating the proposed stability criteria as training constraints such that the resulting SSDNN models satisfy both the accuracy and stability requirements. The validity of the proposed technique is demonstrated through the transient modeling of high-speed interconnect driver and receiver circuits and the stability verifications of the obtained SSDNN models
Keywords :
circuit analysis computing; circuit stability; eigenvalues and eigenfunctions; high-speed integrated circuits; integrated circuit modelling; microwave integrated circuits; neural nets; nonlinear network analysis; transient analysis; SSDNN model training; eigenvalues method; high-speed integrated circuits; high-speed interconnect driver circuits; high-speed nonlinear circuits; nonlinear microwave circuits; receiver circuits; stability analysis methods; stability verification; state-space dynamic neural network technique; transient behavior modeling; Application specific integrated circuits; Circuit stability; Circuit testing; High speed integrated circuits; Integrated circuit modeling; Neural networks; Nonlinear circuits; Robustness; Stability analysis; Stability criteria; Modeling; neural networks; nonlinear circuits; stability analysis; transient analysis;
Journal_Title :
Microwave Theory and Techniques, IEEE Transactions on
DOI :
10.1109/TMTT.2006.875297