Title :
A factored approach to subdivision surfaces
Author :
Warren, Joe ; Schaefer, Scott
Author_Institution :
Rice Univ., Houston, TX, USA
Abstract :
Polygons are a ubiquitous modeling primitive in computer graphics. However, modeling with polygons is problematic for highly faceted approximations to smooth surfaces. The sheer size of these approximations makes them impossible to manipulate directly. Subdivision solves this problem by representing a smooth shape in terms of a coarse polygonal model. The subdivision rules used during this refinement process depend only on the initial model´s topological connectivity and yield surfaces with guaranteed smoothness. Subdivision schemes are either interpolating or approximating. The averaging methods we´ve described are approximating in that the surfaces don´t interpolate the original surface´s vertices. Interpolating methods interpolate the vertices of the original surface, giving the user a more intuitive feel of the final surface shape.
Keywords :
interpolation; rendering (computer graphics); solid modelling; approximation method; averaging method; computer graphics; interpolation; polygon modeling; refinement process; subdivision surfaces; ubiquitous modeling; Data structures; Equations; Geometry; Graphics; Mice; Rendering (computer graphics); Shape; Smoothing methods; Spline; Topology; Algorithms; Animals; Brain; Computer Graphics; Image Interpretation, Computer-Assisted; Mice; Models, Anatomic; Numerical Analysis, Computer-Assisted;
Journal_Title :
Computer Graphics and Applications, IEEE
DOI :
10.1109/MCG.2004.1297015