DocumentCode :
984139
Title :
A new efficient approach for the removal of impulse noise from highly corrupted images
Author :
Abreu, Eduardo ; Lightstone, Michael ; Mitra, Sanjit K. ; Arakawa, Kaoru
Author_Institution :
Dept. of Electr. & Comput. Eng., California Univ., Santa Barbara, CA, USA
Volume :
5
Issue :
6
fYear :
1996
fDate :
6/1/1996 12:00:00 AM
Firstpage :
1012
Lastpage :
1025
Abstract :
A new framework for removing impulse noise from images is presented in which the nature of the filtering operation is conditioned on a state variable defined as the output of a classifier that operates on the differences between the input pixel and the remaining rank-ordered pixels in a sliding window. As part of this framework, several algorithms are examined, each of which is applicable to fixed and random-valued impulse noise models. First, a simple two-state approach is described in which the algorithm switches between the output of an identity filter and a rank-ordered mean (ROM) filter. The technique achieves an excellent tradeoff between noise suppression and detail preservation with little increase in computational complexity over the simple median filter. For a small additional cost in memory, this simple strategy is easily generalized into a multistate approach using weighted combinations of the identity and ROM filter in which the weighting coefficients can be optimized using image training data. Extensive simulations indicate that these methods perform significantly better in terms of noise suppression and detail preservation than a number of existing nonlinear techniques with as much as 40% impulse noise corruption. Moreover, the method can effectively restore images corrupted with Gaussian noise and mixed Gaussian and impulse noise. Finally, the method is shown to be extremely robust with respect to the training data and the percentage of impulse noise
Keywords :
Gaussian noise; adaptive filters; adaptive signal processing; computational complexity; filtering theory; image classification; image restoration; interference suppression; random processes; Gaussian noise; adaptive approach; classifier; computational complexity; detail preservation; filtering operation; fixed valued impulse noise models; highly corrupted images; identity filter; image restoration; image training data; impulse noise removal; input pixel; median filter; multistate approach; noise suppression; random valued impulse noise models; rank-ordered mean filter; rank-ordered pixels; simulations; sliding window; state variable; two-state approach; weighting coefficients; Computational complexity; Computational modeling; Cost function; Filtering; Filters; Gaussian noise; Pixel; Read only memory; Switches; Training data;
fLanguage :
English
Journal_Title :
Image Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1057-7149
Type :
jour
DOI :
10.1109/83.503916
Filename :
503916
Link To Document :
بازگشت