Title :
Analytic Properties and Covariance Functions for a New Class of Generalized Gibbs Random Fields
Author :
Hristopulos, Dionissios T. ; Elogne, Samuel N.
Author_Institution :
Dept. of Miner. Resources Eng., Tech. Univ. of Crete, Chania
Abstract :
Spartan spatial random fields (SSRFs) are generalized Gibbs random fields, equipped with a coarse-graining kernel that acts as a low-pass filter for the fluctuations. SSRFs are defined by means of physically motivated spatial interactions and a small set of free parameters (interaction couplings). This paper focuses on the fluctuation-gradient-curvature (FGC) SSRF model, henceforth referred to as FGC-SSRF. This model is defined on the Euclidean space R by means of interactions proportional to the squares of the field realizations, as well as their gradient and curvature. The permissibility criteria of FGC-SSRFs are extended by considering the impact of a finite-bandwidth kernel. It is proved that the FGC-SSRFs are almost surely differentiable in the case of finite bandwidth. Asymptotic explicit expressions for the Spartan covariance function are derived for d = 1 and d= 3; both known and new covariance functions are obtained depending on the value of the FGC-SSRF shape parameter. Nonlinear dependence of the covariance integral scale on the FGC-SSRF characteristic length is established, and it is shown that the relation becomes linear asymptotically. The results presented in this paper are useful in random field parameter inference, and in spatial interpolation of irregularly spaced samples.
Keywords :
covariance analysis; filtering theory; interpolation; low-pass filters; random processes; Euclidean space; FGC SSRF model; analytic properties; asymptotic explicit expression; coarse-graining kernel; covariance functions; finite-bandwidth kernel; fluctuation-gradient-curvature; generalized Gibbs random fields; interaction coupling; low-pass filter; physically motivated spatial interactions; random field parameter inference; spartan covariance function; spartan spatial random fields; spatial interpolation; Bandwidth; Fluctuations; Image processing; Interpolation; Kernel; Low pass filters; Mineral resources; Petroleum; Shape; Spatial resolution; Covariance spectral density; Gaussian random field; geostatistics; image processing; mapping;
Journal_Title :
Information Theory, IEEE Transactions on
DOI :
10.1109/TIT.2007.909163