DocumentCode :
985314
Title :
Information conversion, effective samples, and parameter size
Author :
Lin, Xiaodong ; Pittman, Jennifer ; Clarke, Bertrand
Author_Institution :
Dept. of Math. Sci., Cincinnati Univ., Cincinnati, OH
Volume :
53
Issue :
12
fYear :
2007
Firstpage :
4438
Lastpage :
4456
Abstract :
Consider the relative entropy between a posterior density for a parameter given a sample and a second posterior density for the same parameter, based on a different model and a different data set. Then the relative entropy can be minimized over the second sample to get a virtual sample that would make the second posterior as close as possible to the first in an informational sense. If the first posterior is based on a dependent dataset and the second posterior uses an independence model, the effective inferential power of the dependent sample is transferred into the independent sample by the optimization. Examples of this optimization are presented for models with nuisance parameters, finite mixture models, and models for correlated data. Our approach is also used to choose the effective parameter size in a Bayesian hierarchical model.
Keywords :
Bayes methods; data handling; entropy; Bayesian hierarchical model; dependent dataset; effective inferential power; effective samples; finite mixture models; independence model; information conversion; nuisance parameters; parameter size; posterior density; relative entropy; virtual sample; Bayesian methods; Bioinformatics; Conducting materials; Entropy; Pattern recognition; Random variables; Seminars; Statistical learning; Statistics; Asymptotic relative efficiency; number of parameters; relative entropy; sample size;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.2007.909168
Filename :
4385775
Link To Document :
بازگشت