DocumentCode
986551
Title
Characterizing polynomials with roots in a semialgebraic set
Author
Lasserre, Jean B.
Author_Institution
LAAS-CNRS, Toulouse, France
Volume
49
Issue
5
fYear
2004
fDate
5/1/2004 12:00:00 AM
Firstpage
727
Lastpage
731
Abstract
Let p∈R[x] be a real-valued polynomial and S⊆C a set defined by polynomial inequalities gk(z,z~)≥0 for some polynomials gk in C[z,z~]. We provide a necessary and sufficient condition on the coefficients of p for all the zeros of p to be in S.
Keywords
poles and zeros; polynomials; set theory; poles; polynomials; roots; semialgebraic set; zeros; Eigenvalues and eigenfunctions; Instruction sets; Kalman filters; Polynomials; Sufficient conditions; Poles; zeros;
fLanguage
English
Journal_Title
Automatic Control, IEEE Transactions on
Publisher
ieee
ISSN
0018-9286
Type
jour
DOI
10.1109/TAC.2004.825958
Filename
1298997
Link To Document