• DocumentCode
    986551
  • Title

    Characterizing polynomials with roots in a semialgebraic set

  • Author

    Lasserre, Jean B.

  • Author_Institution
    LAAS-CNRS, Toulouse, France
  • Volume
    49
  • Issue
    5
  • fYear
    2004
  • fDate
    5/1/2004 12:00:00 AM
  • Firstpage
    727
  • Lastpage
    731
  • Abstract
    Let p∈R[x] be a real-valued polynomial and S⊆C a set defined by polynomial inequalities gk(z,z~)≥0 for some polynomials gk in C[z,z~]. We provide a necessary and sufficient condition on the coefficients of p for all the zeros of p to be in S.
  • Keywords
    poles and zeros; polynomials; set theory; poles; polynomials; roots; semialgebraic set; zeros; Eigenvalues and eigenfunctions; Instruction sets; Kalman filters; Polynomials; Sufficient conditions; Poles; zeros;
  • fLanguage
    English
  • Journal_Title
    Automatic Control, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9286
  • Type

    jour

  • DOI
    10.1109/TAC.2004.825958
  • Filename
    1298997