DocumentCode :
988145
Title :
Asymptotic Uncertainty of Transfer-Function Estimates Using Nonparametric Noise Models
Author :
Pintelon, Rik ; Hong, Mei
Author_Institution :
Vrije Univ. Brussel, Brussels
Volume :
56
Issue :
6
fYear :
2007
Firstpage :
2599
Lastpage :
2605
Abstract :
Identification of parametric transfer-function models from noisy input/output observations is an important task in many engineering applications. Aside from the parametric model, the estimation algorithm used should also provide accurate confidence bounds. In addition, it is important to know whether the proposed estimation algorithm has the lowest possible uncertainty within the class of consistent estimators. This paper handles these issues for the frequency-domain Gaussian maximum-likelihood estimator of rational transfer-function models within an errors-invariables framework.
Keywords :
frequency-domain analysis; maximum likelihood estimation; transfer functions; asymptotic uncertainty; frequency-domain Gaussian maximum-likelihood estimation; nonparametric noise models; parametric transfer-function models; transfer-function estimation; Control systems; Discrete Fourier transforms; Error correction; Frequency estimation; Integrated circuit modeling; Measurement errors; Noise generators; Signal generators; Signal processing; Uncertainty; Errors-in-variables; frequency domain; nonparametric noise models; system identification; transfer-function estimates; uncertainty bounds;
fLanguage :
English
Journal_Title :
Instrumentation and Measurement, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9456
Type :
jour
DOI :
10.1109/TIM.2007.908606
Filename :
4389132
Link To Document :
بازگشت