Title :
Generalized cross validation for multiwavelet shrinkage
Author :
Hsung, Tai-Chiu ; Lun, Daniel Pak-Kong
Author_Institution :
Dept. of Electron. & Inf. Eng., Hong Kong Polytech. Univ., China
fDate :
6/1/2004 12:00:00 AM
Abstract :
Traditional multiwavelet shrinkage denoising techniques require a priori knowledge of noise variance that may not be obtained in some practical situations. By using generalized cross validation (GCV), we propose in this paper a new level-dependent risk estimator for multiwavelet shrinkage that does not require such a priori information. Simulation results verify that the resulted risk estimator gives better indication on threshold selection comparing with the traditional GCV method. Improved denoising performance is then achieved particularly for higher multiplicity multiwavelet shrinkage.
Keywords :
parameter estimation; shrinkage; signal denoising; smoothing methods; wavelet transforms; white noise; GCV; generalized cross validation; level-dependent risk estimator; multiwavelet shrinkage denoising technique; noise variance; parameter estimation; smoothing methods; wavelet transforms; white noise; Discrete transforms; Discrete wavelet transforms; Mean square error methods; Noise level; Noise reduction; Parameter estimation; Signal processing; Signal representations; Smoothing methods; White noise; Multiwavelet; parameter estimation; smoothing methods; wavelet transforms; white noise;
Journal_Title :
Signal Processing Letters, IEEE
DOI :
10.1109/LSP.2004.827924