• DocumentCode
    993483
  • Title

    Josephson device with well-defined and low critical points

  • Author

    Beha, H.

  • Author_Institution
    IBM Zurich Research Laboratory, Switzerland
  • Volume
    19
  • Issue
    3
  • fYear
    1983
  • fDate
    5/1/1983 12:00:00 AM
  • Firstpage
    1229
  • Lastpage
    1233
  • Abstract
    Two different basic types of switching behavior of Josephson interferometers are possible: a vortex-to-vortex and a vortex-to-voltage transition. Both transition types are separated by the so-called critical points on the threshold curve of the device. For critical points, in general, no analytic expression is available. Therefore, the position of the critical points can only be determined by numerical solutions. In the designs known, the critical points are very sensitlve with respect to parameter variations, which makes LSI design very difficult. In this paper, the design and the experimental results of an asymmetric Josephson interferometer with one well-defined and low critical point are described. This well-defined critical point corresponds to the tip point of the threshold characteristic, which is defined by an analytical expression. The practical consequence for the design of Josephson circuits will be indicated. The dynamic switching behavior of the asymmetric interferometer with respect to the critical points will be discussed extensively in the phase plane, together with the potential energy.
  • Keywords
    Josephson devices; Circuits; Differential equations; Interferometers; Laboratories; Large scale integration; Nonlinear dynamical systems; Potential energy; Superconducting devices; Switches; Voltage;
  • fLanguage
    English
  • Journal_Title
    Magnetics, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9464
  • Type

    jour

  • DOI
    10.1109/TMAG.1983.1062321
  • Filename
    1062321