DocumentCode :
995091
Title :
On an optimum line source for maximum directivity
Author :
Rhodes, Donald R.
Author_Institution :
North Carolina State Univ., Raleigh, NC, USA
Volume :
19
Issue :
4
fYear :
1971
fDate :
7/1/1971 12:00:00 AM
Firstpage :
485
Lastpage :
492
Abstract :
An exact solution is derived for the line source that maximizes a generalization D_{\\alpha } of the directivity in any given direction \\theta_{y}{0} for arbitrarily prescribed values of the aperture length l , the edge behavior exponent \\alpha , and the constraining superdirectivity ratio \\gamma _{\\alpha } . The quantity D_{\\alpha } represents exactly directivity for \\alpha = 1 and approximately for any other value of \\alpha > -1 . The solution is expressed in its natural form as a series of spheroidal functions \\psi_{\\alpha n}(c,\\eta) of order \\alpha . The most directive pattern space factor possible for an ( N + 1 )- term series expansion is shown to be F(c \\cos \\theta_{y}) = \\sum \\min{n=0}\\max {N} a_{\\alpha n}\\psi_{\\alpha n}(c, \\cos \\theta_{y}) and the resulting aperture distribution to be A \\lgroup frac{2y}{l} rgroup = \\lgroup 1-[frac{2y}{l}]^{2} rgroup^{\\alpha } \\sum \\min{n=0}\\max {N} frac{a_{\\alpha n}}{\\nu_{\\alpha n}(c)} \\psi_{\\alpha n} \\lgroup c, frac{2y}{l} rgroup , where a_{\\alpha 0} is an arbitrary (real) normalizing constant and the other a_{\\alpha n} must satisfy the following set of N linear equations: \\sum \\min{n=1}\\max {N} x_{pn}(\\mu,D_{\\alpha })a_{\\alpha n} = -x_{p0}a_{\\alpha 0} , p = 1,2,3,...,N in which X_{pn}(\\mu,D_{\\alpha }) = 2\\psi_{\\alpha n}(c, \\cos \\theta_{y0}) \\psi_{\\alpha p}(c, \\cos \\theta_{y0})(1 - \\cos^{2} \\theta_{y0})^{\\alpha } +(\\mu[\\gamma _{\\alpha n}(c) - \\gamma _{\\alpha }] - D_{\\alpha })\\Lambda _{\\alpha n}(c) \\delta _{pn} , and where the unknown directivity D_{\\alpha } and Lagrange multiplier \\mu , must be such that D_{\\alpha } is the largest root of the determinantal equation | {X_{pn}(\\mu,D_{\\alpha })} | = 0 that satisfies the constraining condition \\sum \\min{n=0}\\max {N} a_{\\alpha n}^{2}[\\gamma _{\\alpha n}(c) - \\gamma _{\\alpha }]\\Lambda _{\\alpha n}(c) = 0 ; c is \\pi l/\\lambda , \\nu_{\\alpha n}(c) , and \\gamma _{\\alpha n}(c) are characteristic numbers of the spheroidal functions, and \\Lambda _{\\alpha n}(c) is the normalization factor for the spheroidal functions on the interval (-1- ,1). By letting N \\rightarrow \\infty the solution becomes exact. Numerical results obtained for l = 2\\lambda and 5\\lambda , when \\alpha = 0 and \\theta_{y0} = 90\\deg (broadside), reveal that for every unit increase in maximum directivity the value of \\gamma _{0} - 1 must be increased by a factor of about one hundred.
Keywords :
Line source antennas; Optimization methods; Aerospace engineering; Apertures; Equations; Lagrangian functions;
fLanguage :
English
Journal_Title :
Antennas and Propagation, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-926X
Type :
jour
DOI :
10.1109/TAP.1971.1139958
Filename :
1139958
Link To Document :
بازگشت