• DocumentCode
    996477
  • Title

    Multidimensional discretization of the stationary quantum drift-diffusion model for ultrasmall MOSFET structures

  • Author

    Odanaka, Shinji

  • Author_Institution
    Cybermedia Center, Osaka Univ., Japan
  • Volume
    23
  • Issue
    6
  • fYear
    2004
  • fDate
    6/1/2004 12:00:00 AM
  • Firstpage
    837
  • Lastpage
    842
  • Abstract
    This paper describes a new approach to construct a multidimensional discretization scheme of quantum drift-diffusion (QDD) model (or density gradient model) arising in MOSFET structures. The discretization is performed for the stationary QDD equations replaced by an equivalent form, employing an exponential transformation of variables. A multidimensional discretization scheme is constructed by making use of an exponential-fitting method in a class of conservative difference schemes, applying the finite-volume method, which leads to a consistent generalization of the Scharfetter-Gummel expression to the nonlinear Sturm-Liouville type equation. The discretization method is evaluated in a variety of MOSFET structures, including a double-gate MOSFET with thin body layer. The discretization method provides numerical stability and accuracy for carrier transport simulations with quantum confinement effects in ultrasmall MOSFET structures.
  • Keywords
    MOSFET; Sturm-Liouville equation; carrier mobility; diffusion barriers; gradient methods; nonlinear equations; semiconductor device models; Scharfetter-Gummel expression; carrier transport simulations; conservative difference schemes; density gradient model; double-gate MOSFET; exponential variable transformation; exponential-fitting method; finite-volume method; multidimensional discretization; nonlinear Sturm-Liouville type equation; quantum confinement effects; semiconductor transport; stationary QDD equations; stationary quantum drift-diffusion model; ultrasmall MOSFET structures; Finite volume methods; MOSFET circuits; Multidimensional systems; Nonlinear equations; Numerical models; Poisson equations; Potential well; Quantum computing; Quantum mechanics; Schrodinger equation; Density gradient theory; MOSFET; QDD; discretization; double-gate MOSFET; model; quantum confinement; quantum drift-diffusion; semiconductor transport;
  • fLanguage
    English
  • Journal_Title
    Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0278-0070
  • Type

    jour

  • DOI
    10.1109/TCAD.2004.828128
  • Filename
    1302185