DocumentCode :
996477
Title :
Multidimensional discretization of the stationary quantum drift-diffusion model for ultrasmall MOSFET structures
Author :
Odanaka, Shinji
Author_Institution :
Cybermedia Center, Osaka Univ., Japan
Volume :
23
Issue :
6
fYear :
2004
fDate :
6/1/2004 12:00:00 AM
Firstpage :
837
Lastpage :
842
Abstract :
This paper describes a new approach to construct a multidimensional discretization scheme of quantum drift-diffusion (QDD) model (or density gradient model) arising in MOSFET structures. The discretization is performed for the stationary QDD equations replaced by an equivalent form, employing an exponential transformation of variables. A multidimensional discretization scheme is constructed by making use of an exponential-fitting method in a class of conservative difference schemes, applying the finite-volume method, which leads to a consistent generalization of the Scharfetter-Gummel expression to the nonlinear Sturm-Liouville type equation. The discretization method is evaluated in a variety of MOSFET structures, including a double-gate MOSFET with thin body layer. The discretization method provides numerical stability and accuracy for carrier transport simulations with quantum confinement effects in ultrasmall MOSFET structures.
Keywords :
MOSFET; Sturm-Liouville equation; carrier mobility; diffusion barriers; gradient methods; nonlinear equations; semiconductor device models; Scharfetter-Gummel expression; carrier transport simulations; conservative difference schemes; density gradient model; double-gate MOSFET; exponential variable transformation; exponential-fitting method; finite-volume method; multidimensional discretization; nonlinear Sturm-Liouville type equation; quantum confinement effects; semiconductor transport; stationary QDD equations; stationary quantum drift-diffusion model; ultrasmall MOSFET structures; Finite volume methods; MOSFET circuits; Multidimensional systems; Nonlinear equations; Numerical models; Poisson equations; Potential well; Quantum computing; Quantum mechanics; Schrodinger equation; Density gradient theory; MOSFET; QDD; discretization; double-gate MOSFET; model; quantum confinement; quantum drift-diffusion; semiconductor transport;
fLanguage :
English
Journal_Title :
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on
Publisher :
ieee
ISSN :
0278-0070
Type :
jour
DOI :
10.1109/TCAD.2004.828128
Filename :
1302185
Link To Document :
بازگشت