DocumentCode :
996855
Title :
Acceleration of backpropagation learning using optimised learning rate and momentum
Author :
Yu, X.-H. ; Chen, G.-A. ; Cheng, S.-X.
Author_Institution :
Dept. of Radio Eng., Southeast Univ., Nanjing, China
Volume :
29
Issue :
14
fYear :
1993
fDate :
7/8/1993 12:00:00 AM
Firstpage :
1288
Lastpage :
1290
Abstract :
Learning rate and momentum factor are two arbitrary parameters that have to be carefully chosen in the conventional backpropagation (BP) learning algorithm. Based on a linear expansion of the actual outputs of the BP network with respect to the two parameters, the authors present an efficient approach to determine the dynamically optimal values of these two parameters. Simulation results indicate that the present approach can provide a remarkable improvement in convergence performance.
Keywords :
backpropagation; convergence; learning (artificial intelligence); backpropagation learning; convergence performance; dynamically optimal values; momentum factor; optimised learning rate;
fLanguage :
English
Journal_Title :
Electronics Letters
Publisher :
iet
ISSN :
0013-5194
Type :
jour
DOI :
10.1049/el:19930860
Filename :
252436
Link To Document :
بازگشت