عنوان مقاله :
پيشنهاد مدلي جهت تشخيص و طبقهبندي اختلالهاي يادگيري كودكان استثنايي با استفاده از سيستمهاي خبرهٔ هوشمند
عنوان به زبان ديگر :
A Proposal for a Model for Diagnosis and Classification of Exceptional Children with learning Disabilities by Using Intelligent Expert Systems
پديد آورندگان :
فاطمي بوشهري، محمدمهدي دانشگاه آزاد اسلامي يزد - پرديس علوم و تحقيقات - گروه مهندسي نرم افزار , سرداري زارچي، محسن دانشگاه حائري ميبد - دانشكدهٔ فني مهندسي
كليدواژه :
اختلال يادگيري , شبكههاي عصبي مصنوعي , يادگيري ماشين , سيستمهاي خبره , الگوريتم ژنتيك
چكيده فارسي :
زمينه و هدف: هدف اين پژوهش ارائهٔ مدلي كاملاً هوشمند و مبتنيبر تكنيكهاي هوش مصنوعي و يادگيري ماشين جهت تشخيص و طبقهبندي اختلالهاي يادگيري كودكان استثنايي است. در اين پژوهش ابتدا ضرورت دستيابي به سيستمي خبره و طبقهبنديكننده بررسي شده است. سپس با بررسي كامل مدلهاي ارائهشدهٔ موفقتر در اين زمينه، نقاط ضعف و قوت هريك از مدلها بيان شده است. با بررسي مدلهاي مطرح كنوني مشخص شد مدلهاي مبتني بر تكنيكهاي نرمافزاري و هوش مصنوعي بهعلت دسترسي آسان و هزينهٔ كمتر در مقايسه با مدلهاي مبتنيبر پردازش سيگنال ديجيتال و پردازش تصوير ديجيتال جهت اين نوع طبقهبنديها مناسبتر هستند؛ بنابراين يك مدل هوشمند تركيبي با استفاده از نقاط قوت مدلهاي قبلي و مبتنيبر تكنيكهاي هوش مصنوعي و يادگيري ماشين پيشنهاد ميشود. در مدل پيشنهادشده با استفاده از الگوريتم ژنتيك، مجموعه ويژگيهايي كه در اين نوع طبقهبندي نقش مؤثرتري دارند بهصورت هوشمند شناسايي و استخراج ميشود. اين مدل با استفاده از يك سيستم منطق فازي قوانين طبقهبندي مذكور را بهصورت هوشمندانه استخراج ميكند. در پايان نحوهٔ پيادهسازي مدل پيشنهادي شرح داده شده است.
چكيده لاتين :
Background and objective: The aim of this study is proposing an intelligent model for diagnosis and classification of learning disabilities based
on machine learning methods and artificial neural network. Learning disabilities are among the most important and the most complex disabilities
in the field of exceptional children's education. Exceptional education is an important area to which computer systems have contributed. Perhaps
the first step in the education of exceptional children is the identification and classification of problems that these children face. A lot of research
has been carried out regarding the use of machine learning techniques and artificial intelligence in the diagnosis and classification of learning
disabilities. Reviewing of related works shows that machine learning techniques and expert systems are helpful to teachers and exceptional
education’s specialists. Due to complex nature of and large number of learning disabilities, experts find it difficult to diagnose and classify
learning disabilities without the help of computers. Insufficient number of experts raises work pressure and diagnosis delaying. Delaying in
learning disabilities diagnosis causes various problems in learning disabilities treatment. The diversity and extent of learning disabilities and
insufficient number of experts make an expert system necessary for the diagnosis and classification learning disabilities of children.
Methods: In this research firstly, the necessity to develop an expert system for classifying learning disabilities is discussed. Then with reviewing
related works, strengths and weaknesses of each model is expressed. Digital signal processing, digital image processing and machine learning
are the most cited methods used for learning disabilities classification in previous research. A review of the literature shows that models based
on digital signal processing and digital image processing could not be used for this purpose because they are costly and require controlled
conditions for analysis of digital signals and digital images. However, models based on digital signal processing and image processing are highly
accurate. Models based on machine learning and artificial intelligence methods are also highly accurate. In addition, results show models based
on artificial intelligence are less costly than models based on digital signal processing and image processing. Therefore, models based on machine
learning methods are more appropriate than models based on digital signal processing and image processing for application systems. Artificial
neural network could classify learning disabilities with an accuracy of over 85%.
Results: Results show that by using genetic algorithm for feature selection the accuracy of classification can be improved. In addition, by using
fuzzy logic system researchers can extract rules of classification.
Conclusion: A hybrid intelligent model based on artificial intelligence and machine-learning methods using the strengths of previous models is
proposed. The proposed model uses genetic algorithm for feature selection from among a set of features that have the highest impact in
classification extracting. In the proposed model learning disabilities are classified with an artificial neural network. This model uses a fuzzy logic
system to extracts rules of classification intelligently. The proposed model is highly accurate in classification and implementation simplicity.
Finally, implementation of proposed model is explained.
عنوان نشريه :
مطالعات ناتواني
عنوان نشريه :
مطالعات ناتواني