پديد آورندگان :
اسمعيلي نوجه ده، اعظم دانشگاه تبريز - دانشكده كشاورزي - گروه علوم دامي , عليجاني، صادق دانشگاه تبريز - گروه علوم دامي , حسن پور، كريم دانشگاه تبريز - گروه علوم دامي , جوانمرد، آرش دانشگاه تبريز - گروه علوم دامي
كليدواژه :
رگرسيون تصادفي , ژنتيك , مولفه اصلي , همبستگي ژنتيكي
چكيده فارسي :
زمينه مطالعاتي:
مدل رگرسيون تصادفي يكي از دقيق ترين مدل ها براي پيش بيني ارزش اصلاحي، با استفاده از ركوردهاي روزآزمون مي باشد. با اين حال به كار بردن اين مدل از نظر محاسباتي دشوار و زمان بر است.
هدف
تعيين اهميت نسبي ارزش هاي اصلاحي در روزهاي مختلف شيردهي و برآورد مولفه هاي اصلي ژنتيكي براي ارزش هاي اصلاحي صفات توليد شير گاوهاي هلشتاين ايران اهداف اصلي تحقيق حاضر مي باشند.
روش كار
از ركوردهاي روزآزمون توليد شير، درصد چربي و درصد پروتئين دوره شيردهي اول گاوهاي شيري هلشتاين (متولد سال هاي 1367 تا 1394) كه توسط مركز اصلاح نژاد كشور جمع آوري شده بود، استفاده شد. براي صفات توليد شير، درصد چربي و درصد پروتئين به ترتيب از ركوردهاي 73839، 65165 و 46881 راس گاو، از 230 گله كه در شجره خود داراي 176390 راس گاو بود، استفاده شد. پارامترهاي ژنتيكي اين صفات با استفاده از مدل رگرسيون تصادفي و توسط GIBSS3F90 برآورد شد. سپس ماتريس همبستگي بين ارزش هاي اصلاحي به دست آمده در روزهاي مختلف شيردهي محاسبه گرديد. در ادامه، مولفه هاي اصلي ژنتيكي از ارزش هاي اصلاحي توسط رويه PRINCOMP نرم افزار SAS به دست آمد.
نتايج
ماتريس همبستگي ژنتيكي بين ارزش هاي اصلاحي پيش بيني شده در روزهاي مختلف نشان مي دهد كه ارزش هاي اصلاحي در اواسط دوره شيردهي براي تمامي صفات همبستگي بالايي دارند. با استفاده از تجزيه ي مولفه هاي اصلي براي ارزش هاي اصلاحي مشاهده شد كه دو مولفه ي اصلي اول درصد بالايي از واريانس ژنتيكي كل را تبيين مي كنند. براي صفت توليد شير اولين مولفه ي اصلي 99/48 درصد و براي صفات درصد چربي و درصد پروتئين به ترتيب 98/19 درصد و 100 درصد از واريانس كل ژنتيكي توسط دو مولفه اصلي اول تبيين شد. نتيجه گيري نهايي: در جهت كاهش هزينه هاي ركوردبرداري و با در نظر گرفتن همبستگي بالاي بين ارزش هاي اصلاحي به نظر مي رسد، پيش بيني ارزش هاي اصلاحي براي كل روزهاي آزمون ضرورتي ندارد. بنابراين مي توان روي ركوردبرداري در روزهايي كه با مولفه هاي اصلي ارتباط بالايي نشان مي دهند، تمركز نمود.
چكيده لاتين :
Introduction: In the quantitative genetics area, random regression model is one of the most accurate models for estimating daily breeding value in dairy cattle. However, because of the higher number records per each cow, application of this model is labor and time consuming. In addition, breeding values of cows at different days of lactation are highly correlated. The main objectives of the current study were to determine the relative importance of each breeding value at different days of lactation and to estimate the genetic principal components for the breeding values of Iranian Holstein dairy cattle for milk production traits.
Maternal and methods: records of milk production traits of first-parity dairy cows. Milk yield, fat percentage and protein percentage test-day records of 73839, 65165 and 46881 cows, respectively, from 230 herds with 176390 cows in their pedigree were used in the analyses. Only test-day records belonging to 5 to 305 days of lactation were used. The data belonged to cows were born between 1988 and 2015 with age at first calving ranged between 21 to 48 m. In addition, the existence of at least one monthly record in the first 90 days after calving was essential for the cow, otherwise it would be eliminated. These data were collected by National breeding center, Karaj, Iran. Genetic parameters were estimated by a random regression model and Bayesian approach using GIBSS3F90 software. The estimated breeding values at all days of lactation were calculated and standardized using the standard score (z). Then, Correlation matrices among breeding values at different days of lactation and genetic principal components of breeding values were estimated by PROC CORR and PROC PRINCOMP of SAS software, respectively. Finally, we could calculate principal component score as a selection criterion (selection index) for the selection of dairy cattle. For this purpose, the standardized score coefficient was obtained by dividing the daily eigenvector of each principal component by square root of its eigenvalue. The principal component score were calculated of the sum of the multiply between standardized score coefficient and daily standardized breeding values for each cow. However, the principal components could be used as an index to multiple traits evaluation of animals.
Results and discussion: The genetic correlations matrix between the estimated breeding values at different days of lactation demonstrated that the breeding values at the middle stage of lactation were highly correlated with the breeding values at the reaming stages of lactation. The genetic principal component analysis revealed that the first two principal components accounted for a high percent of total genetic variance of all studied traits. For milk yield, the first principal component explained 99.48% of genetic variance, while two first components explained almost 98.19% and 100% of genetic variance for fat percent and protein percent traits, respectively. The absolute value of correlations between the first principal component of milk yield and all breeding values (except for day 56 and day 231) were more than 0.056. The absolute values of correlations between the first principal component of fat percent and the daily breeding values were greater than 0.06 for days between 83 and 222; and for protein percent were greater than 0.07 for days 99 to 168 and days 289 to 305. Considering the high correlation between breeding values seem to, were estimated breeding values for all days is not required. The first principal component milk yield trait with nearly all estimated breeding values, high correlation and first two principal component fat percent trait of estimated breeding values in the early and middle of lactation period had a high relationship. But first two principal component protein percent trait of estimated breeding values in the middle and later of lactation period had a high correlation.
Conclusions: Considering the high cost of recording system in dairy cattle industry and the high correlation between the breeding values, it seems that there is no need to predict the breeding value for all days of lactation. In other words, reducing the number of records per each cow may be beneficial at both economic and genetics stand points. Furthermore, due to the high, direct correlation between the principal components and daily breeding values, the implementation of principal components in the genetic merit evaluation of selection candidates for production-related traits is suggested.