شماره ركورد :
1069749
عنوان مقاله :
مقايسه مدل‌هاي رگرسيون لجستيك و بيزين رگرسيون لجستيك به منظور پيش‌بيني مكاني حركت‌هاي توده‌اي استان كردستان
عنوان به زبان ديگر :
Comparison between Logistic Regression and Bayesian Logistic Regression for Spatial Prediction of Mass Movements in Kurdistan Province
پديد آورندگان :
چپي، كامران دانشگاه كردستان، سنندج - دانشكدة منابع طبيعي - گروه مرتع و آبخيزداري , طالب پور اصل، داود دانشگاه كردستان، سنندج - دانشكدة منابع طبيعي - گروه ژئومورفولوژي , شيرزادي، عطااله دانشگاه كردستان، سنندج - دانشكدة منابع طبيعي - گروه مرتع و آبخيزداري
تعداد صفحه :
22
از صفحه :
60
تا صفحه :
81
كليدواژه :
زمين لغزش , تئوري بيزين , رگرسيون لجستيك , استان كردستان
چكيده فارسي :
هدف از انجام اين پژوهش ارائه روش تركيبي بيزين رگرسيون لجستيك و مقايسه كارايي آن با روش رگرسيون لجستيك به منظور تهيه نقشه پيش بيني مكاني وقوع حركت­هاي توده­اي در استان كردستان مي­باشد. در ابتدا، بر اساس مرور منابع 18 عامل تأثيرگذار بر وقوع حركت­هاي توده­اي شامل: درجه شيب، جهت شيب، ارتفاع، انحناي معمولي شيب، انحناي عرضي شيب، انحناي طولي شيب، شاخص توان حمل جريان، شاخص نمناكي توپوگرافي، شاخص طول و زاوية شيب، ليتولوژي، بارش، كاربري ارضي، فاصله از گسل، تراكم گسل، فاصله از رودخانه، تراكم رودخانه، فاصله از جاده و تراكم جاده انتخاب شدند. سپس، در روش رگرسيون لجستيك (LR) بر اساس سطح معني­داري آماري 7 عامل و در روش بيزين لجستيك رگرسيون (BLR) بر اساس شاخص Information Gain Ratio، 11 عامل به عنوان عوامل مؤثر انتخاب و جهتمدل­سازي به كار گرفته شدند. ارزيابي مدل­ها (داده­هاي تعليمي و داده­هاي تست) توسط معيارهاي Specificity، Sensitivity، Accuracy، درصد مساحت زير منحني ROC و ريشه ميانگين مربعات خطا انجام شدند. نتايج ارزيابي مدل­هاي مورد استفاده در اين تحقيق نشان داد كه اختلاف معني­داري در سطح 95 درصد بين كارايي و نقشه­هاي پيش بيني مكاني تهيه شده براي مناطق حساس به وقوع حركت هاي توده­اي خاك با روش­هاي BLR و LR مشاهده نشد و مي­توان از مدل BLR نيز به مانند مدل LR به عنوان يك مدل معيار استفاده نمود. لذا با روش LR حدود 26 درصد از مساحت استان كردستان در معرض حساسيت زياد و خيلي زياد به وقوع حركت هاي توده اي(54 درصد مجموع حركتهاي توده اي) قرار دارد و با روش BLR حدود 33 درصد از مساحت استان كردستان در معرض حساسيت زياد و خيلي زياد به وقوع حركت هاي توده اي (64 درصد مجموع حركتهاي توده اي) قرار دارد كه نواحي غرب استان داراي پتانسيل بيشتري هستند.
چكيده لاتين :
Introduction Geomorphological hazards such as mass movements are one of the potentially harmful phenomena. Landslides as one of the most traditional earth movements involved all slope failures in which a mass of materials (soil and rock) moves down the slope due to decreasing of safety factor and overcoming of the destructive forces on the resistance forces on a slope. Kurdistan province has been frequently exposed to mass movement hazards owing to its characteristics of topography, geomorphology, pedology, geology and climatology. Therefore, the objective of this study is 1) to prepare the spatial prediction map of mass movements for the Kurdistan province to manage the areas prone to the hazards and to use the map in the land use planning projects and development of the rural regions 2) to introduce the Bayesian logistic regression (BLR) ensemble and to compare its efficiency with the logistic regression (LR), and 3) to identify the most significant conditioning factors on mass movements occurrence in the Kurdistan province. Methodology Based on the literature review, 18 factors affecting landslide susceptibility were selected for modeling including slope degree, slope aspect, elevation above sea, curvature, profile curvature, plan curvature, stream power index, topographic wetness index, length-angle of slope, lithology, rainfall, land use, distance to fault, fault density, distance to stream, stream density, distance to road, and road density. A total of 895 mass movements in the Kurdistan province were divided into 70 % (626 locations) for modelling using training dataset and 30% (269 locations) to evaluate based on the validation dataset. Additionally, 626 locations were randomly selected as areas where mass movements have not occurred and they were classified into 70% and 30% for training and validation in modelling process. Based on the Information Gain Ratio index to modelling process, 7 factors were then applied to the LR method and 11 factors were used in the BLR method. The evaluation of models were performed using Specificity, Sensitivity, Accuracy, the area under the Receiver Operating Characteristic Curve (AUROC), and the Root Mean Square of Errors (RMSE) indices. Result and discussion According to the results of spatial prediction of mass movements by quantile approach, about 8.06% of the Kurdistan province area is very sensitive to mass movement occurrence using the LR model; while, the BLR model shows a sensitive area of about 12.46%. The majority of very sensitive and sensitive areas are located to the west of the province. These regions include Oramanat mountainous areas, Kosalan and Chelchama highlands, the Salvatabad Saddle (East of Sanandaj), the Morvarid Saddle (between Sanandaj and Kamyaran), The Khan Saddle (between Saghez and Baneh), and the Arez Saddle (between Sanandaj and Marivan). In order to assess the spatial map accuracy of mass movement sensitive areas prediction, both training and validating datasets were used. The results showed that the area under the curve of SRC is 0.714 in LR based on training data, indicating that this approach has a potential of 71.4 percent to predict sensitive areas to mass movement. BLR showed a value of 0.672 using the same data which implies a potential of 67.2% for prediction of sensitive areas. Based on the validating dataset, the area under the curve of PRC was 0.732 and 0.729 for LR and BLR, respectively. These results confirmed the accuracy of the maps prepared by both models; however, it should be noted that LR was slightly providing better results. To analyze the probability of mass movement occurrence, the potential of the LR and BLR models were evaluated using Friedman test at 5% significant level. The test revealed that there is no significant difference between these two models and both are reasonably able to evaluate spatial prediction of mass movements. Conclusion The results showed that there is no significant difference (95% level of significance) between the efficiency and the susceptibility maps prepared by the two models for spatial predicting of landslide in the study area; therefore, the BLR model can be applied as an index model for the study area and other similar areas. Therefore the hybrid model of Bayesian Logistic Regression has a high capability of identifying sensitive areas to mass movement such that it can be compared with previously successfully testes methods such as artificial neural network, fuzzy logic, decision tree algorithms (Naïve, Random Forest, Baes Forest, …).
سال انتشار :
1397
عنوان نشريه :
پژوهش هاي ژئومورفولوژي كمي
فايل PDF :
7622350
عنوان نشريه :
پژوهش هاي ژئومورفولوژي كمي
لينک به اين مدرک :
بازگشت