كليدواژه :
ﺗﻐﯿﯿﺮات ﮐﺎرﺑﺮي , ﺗﺼﺎوﯾﺮ ﻣﺎﻫﻮاره اي , دﺷﺖ ﺟﻮﭘﺎر , ﻣﺪل ﺳﻠﻮل ﺧﻮدﮐﺎر , ﻣﺎرﮐﻮف
چكيده فارسي :
سابقه و هدف: خاك يكي از منابع طبيعي اصلي تجديد ناپذير ميباشد كه امروزه تخريب آن به عنوان مشكلات زيست محيطي در سراسر جهان مطرح ميباشد. در دهههاي اخير تغييرات سريع و ناپايدار كاربري اراضي به دليل فعاليتهاي توسعهاي و عمراني و افزايش جمعيت باعث تغييرات سريع در استفاده از اراضي و پوشش زمين و در نهايت تخريب خاك بوده است. از اين رو بازبيني اين تغييرات از طريق تصاوير ماهوارهاي و پيشبيني و ارزيابي پتانسيل آنها از طريق مدلسازي ميتواند به مديران و برنامهريزان براي تصميمات آگاهانهتر كمك كند. هدف از اين مطالعه، بررسي روند تغييرات كاربري اراضي در مقطع زماني 1992 تا 2015 با استفاده از تصاوير ماهوارهاي، محاسبه ميزان تغيير كاربريها با يكديگر و پيشبيني تغييرات احتمالي كاربري اراضي در سالهاي 2020، 2025، 2030 و 2035 با استفاده از مدل سلول خودكار-ماركوف در دشت جوپار واقع در استان كرمان ميباشد.
مواد و روشها: در اﯾﻦ تحقيق، جهت تهيه نقشههاي كاربري اراضي از سه دوره ﺗﺼﺎوﯾﺮ ماهوارهاي لندست شامل لندست 5 سنجنده (1992)TM ، لندست 7 سنجنده ETM+ (2000) و لندست 8 سنجنده(2015) OLI استفاده گرديد. به منظور تهيه نقشههاي كاربري اراضي از طريق تصاوير ماهوارهاي، ابتدا بر روي تصاوير مذكور پيش پردازشهاي اوليه نظير تصحيح هندسي و اتمسفري اعمال گرديد. در ادامه با تهيه نمونههاي آموزشي، تصاوير ماهوارهاي در نرم افزار ايدريسي و با استفاده از الگوريتم حداكثر احتمال طبقهبندي و دقت آنها ارزيابي گرديد. نقشههاي كاربري اراضي تهيه شده دورههاي مختلف به منظور توليد ماتريس احتمال انتقال به مدل ماركوف داده شد و در نهايت ماتريس احتمال انتقال كه احتمال انتقال كاربريها به كاربري ديگر را نشان ميدهد توليد شد. سپس آﻧﺎﻟﯿﺰ زﻧﺠﯿﺮه سلول خودكار-مارﮐﻮف، ﺑﺮاﺳﺎس ﻧﻘﺸﻪﻫﺎي ﮐﺎرﺑﺮي اراﺿﯽ دوره پايه و ﻣﺎﺗﺮﯾﺲ احتمال انتقال در مدل ماركوف ﺑﺎ ﺗﺎًﮐﯿﺪ ﺑﺮ ﭘﯿﺶﺑﯿﻨﯽ ﺗﻐﯿﯿﺮات ﮐﺎرﺑﺮي اراﺿﯽ در سالهاي 2020، 2025، 2030 و 2035 با تعداد تكرار و گام متفاوت در روش سلول خودكار-ماركوف انجام شد. ﺑﺮ اﺳﺎس ﻧﺘﺎﯾﺞ اﯾﻦ ﺗﺤﻘﯿﻖ، ﺗﻐﯿﯿﺮات ﮐﺎرﺑﺮيﻫﺎ و ﺳﻄﺢ ﮐﺎرﺑﺮيﻫﺎي ﻣﻨﻄﻘﻪ ﻣﺤﺎﺳﺒﻪ گرديد. پس از ﻣﻘﺎﯾﺴﻪ و ﺑﺮرﺳﯽ مشاهدات، تغييرات كاربري احتمالي براي سناريوهاي تعيين شده پيشبيني گرديد.
يافتهها و نتيجهگيري: ﺑﺮ اﺳﺎس ﻧﺘﺎﯾﺞ اﯾﻦ ﺗﺤﻘﯿﻖ، ﺗﻐﯿﯿﺮات ﮐﺎرﺑﺮيﻫﺎ و ﺳﻄﺢ ﮐﺎرﺑﺮيﻫﺎي ﻣﻨﻄﻘﻪ ﻣﺤﺎﺳﺒﻪ و ﻣﻘﺎﯾﺴﻪ و ﺑﺮرﺳﯽ شدند. نتايج آشكارسازي تغييرات دوره اول (2000-1992) بيشترين افزايش مساحت در كاربريهاي مرتع و چراگاه و باغ و زراعت آبي و بيشترين كاهش مساحت در كاربري بستر رودخانه و دوره دوم (2015-2000) بيشترين افزايش مساحت در كاربريهاي باغ و زراعت آبي و بستر رودخانه و بيشترين كاهش مساحت در كاربري مرتع و چراگاه را نشان داد. نتايج بدست
آمده از پيشبيني تغييرات كاربري آينده منطقه مورد مطالعه به روش سلول خودكار-ماركوف حاكي از كاهش كاربري باغ و زراعت آبي و افزايش كاربريهاي مرتع و چراگاه و بستر رودخانه نسبت به سال 2015 بود. همچنين نتايج مقايسه پيشبيني سالهاي 2020، 2025، 2030 و 2035 با يكديگر كاهش كاربريهاي بستر رودخانه و مرتع و چراگاه را نشان داد كه كمبود بارندگي و افزايش دما كه از شواهد تغيير اقليم ميباشند، دليلي بر اين موضوع و در نهايت تخريب پوشش گياهي و تخريب بيشتر خاك باشد. همچنين با توجه به كمبود بارندگي و خشكساليهاي اخير و پژوهشهاي صورت گرفته ميتوان نتيجه گرفت كه روش سلول خودكار-ماركوف مطابقت بيشتري با منطقه دارا ميباشد.
چكيده لاتين :
Background and Objectives: Soil is one of the main non-renewable natural resources that today its destruction is considered one of the most severe problems all over the world. In recent decades, rapid and unsustainable changes and land use due to the urban development activities and increasing population created a great deal of modifications in land cover and land use and has been increasing the environmental degradation including soil degradation. Therefore, reviewing these changes through satellite images, evaluating and forecasting their potentialities via modeling can help managers and planners to make more effective decisions. The aim of this study was to assess the changes in land use during the period 1992 to 2015 via using satellite images to calculate the rate of land use changes to each other and predict possible changes in land use in the years 2020, 2025, 2030 and 2035, using cellular automata - Markov model (CA-Markov) in Joupar plain, Kerman province.
Materials and Methods: In order to prepare land use plans the three periods of Landsat satellite images including Landsat 5 satellite TM (1992), Landsat 7 ETM+ (2000) and Landsat 8 satellite OLI (2015) were used in this study. To prepare land use maps through satellite images, initially the mentioned images were exposed to primary pre-processing such as geometric and atmospheric corrections. In addition, via providing training samples the satellite images were classified and their accuracy were evaluated using Idrisi imagery software through maximum probability algorithm. The developed land use maps of different periods were transited to CA-Markov model in order to produce transition probability matrix. Ultimately, the transition probability matrix was produced that shows the likelihood of transition of one land use to others. Then the chain analysis of cellular automata – Markov on the basis of land use plans and transition probability matrix in CA-Markov model with an emphasis on land use changes were expected in 2020, 2025, 2030 and 2035 were implemented in Idrisi software with various numbers of repetitions and steps. Based on the survey results, changes in land use and the level of current land use changes calculated, compared and evaluated and the future land use changes were predicted.
Results and Conclusion: The results of the detection of changes in the first period (1992-2000) revealed the highest increase in land area which was attributed to the use of pasture, grassland, irrigated agriculture and orchard and the highest decrease in land area was related to bed stream. In the second period (2000-2015) the greatest increase in land area was associated to the use of irrigated agriculture, orchards and bed stream and the greatest reduction was in pasture and grassland use. The results obtained from the prediction of future user changes of the region based on CA-Markov showed decreasing levels of land use attributed to orchard and irrigated agriculture and increasing levels of land use associated to pasture, grassland and bed stream comparing to 2015. Also the results obtained from the prediction of the findings regarding the years 2020, 2025, 2030 and 2035 revealed a reduction in land use related to bed stream, pasture and grassland due to the lack of rainfall and temperature rise and this will lead in the destruction of vegetation cover as well as the more soil degradation. Also, due to the lack of rainfall, the recent droughts and previous studies we can conclude that the approach of CA-Markov model is more compatible with the conditions of the region.