پديد آورندگان :
ميري، اسماعيل دانشگاه بيرجند - دانشكده مهندسي برق و كامپيوتر - گروه الكترونيك , رضوي، محمد دانشگاه بيرجند - دانشكده مهندسي برق و كامپيوتر - گروه الكترونيك , مهرشاد، ناصر دانشگاه بيرجند - دانشكده مهندسي برق و كامپيوتر - گروه الكترونيك
كليدواژه :
بازشناسي , زير واژگان تايپي فارسي , كاهش فضاي جستجو , موقعيت نقاط و علائم
چكيده فارسي :
در اين مقاله با استفاده از روشي ساده، اما كارا سعي شده دامنه جستجوي زيرواژگان بهشدّت كاهش يابد. در گام آموزش، دادههاي آموزشي براساس موقعيت علائم گروهبندي ميشوند، در گروههايي كه تعداد عناصر بيش از ده زيرواژه است، براي كاهش فضاي جستجو با توجه به تعداد عناصر گروه، با استخراج ويژگيهاي سادهاي از پروفايلهاي افقي و عمودي خوشهبندي صورت ميگيرد. در مرحله بازشناسي در نخستين مرحله با تعيين نسبت پهنا به ارتفاع زيرواژه (با علائم و بيعلائم) و كد موقعيت نقاط و علائم، دامنه جستجو به زيرواژگاني با اين كد موقعيت كه در محدودهاي از نسبتهاي يادشده باشند، محدود ميشود؛ درصورتيكه تعداد زير واژگان محدودشده در اين مرحله كمتر از ده باشد، اين محدوده پذيرفته و در غير اينصورت در مرحله بعد با استخراج ويژگيهاي سادهاي از پروفايلهاي افقي و عمودي فضاي جستجو به تعدادي از نزديكترين خوشهها به اين زيرواژه كه شرط نسبت پهنا به ارتفاع را نيز ارضا كنند محدود ميشود. با اعمال روش پيشنهادي اين مقاله فضاي جستجو تا حد قابل قبولي كاهش يافته است.
چكيده لاتين :
In the field of the words recognition, three approaches of words isolation, the overall shape and combination of them are used. Most optical recognition methods recognize the word based on break the word into its letters and then recogniz them. This approach is faced some problems because of the letters isolation dificulties and its recognition accurcy in texts with a low image quality. Therefore, an approach based on none separating recognition could be useful in such cases.
In methods based on the overall shapes for subword recognition after extraction of subword features usually these features are searched in the image dictionary created in the training phase. Therefore, by considering that we are faced with massive amounts of classes, proposing ways to limit the scope of the search are the main challenges in the overall shape methods. Thus, the information of the overall shape usually is used to reduce the scope search in a hierarchical form.
In this paper, it is tried to reduce the search space of the subwords severely by using a simple and efficient method. In training phase, training data is grouped based on the location of the points and signs, in the groups where have more than 10 subwords, to reduce the search space, according to the number of elements in the group, by extracting the simple features of horizontal and vertical profiles clustering takes place. In recognition phase, in the first step, by determining the width to height ratio of the subword (with signs and without signs) and the position code of the points and signs, the search scope is limited to subwords with this position code that are within the range of the ratios mentioned. This range would be accepted if the number of subwords in this phase is less than ten. Otherwise, in the next step, by extracting the simple features of the horizontal and vertical profiles of the subwords, the search space will be limited to a number of the closest clusters to this subword that also satisfies the width-to-height ratio. By using the proposed method of this paper, the search space has fallen to an acceptable level. In this study, a database of 12700 subwords with five Lotus, Zar, Nazanin, Mitra and Yaghut fonts scanned 400 dpi was used. The four Lotus, Zar, Nazanin and Mitra fonts were used in the training phase and in the test phase, Yaghut font is used.