شماره ركورد :
1123792
عنوان مقاله :
ارائه يك مدل پيش‌بيني يال مبتني بر شباهت ساختاري و هوموفيلي در شبكه‌هاي اجتماعي
عنوان به زبان ديگر :
Providing a Link Prediction Model based on Structural and Homophily Similarity in Social Networks
پديد آورندگان :
اسحاق پور، عليرضا دانشگاه تهران - دانشكده علوم و فنون نوين - گروه بين رشته اي فناوري , صالحي، مصطفي دانشگاه تهران - دانشكده علوم و فنون نوين - گروه بين رشته اي فناوري , رنجبر، وحيد دانشگاه يزد - دانشكده مهندسي كامپيوتر
تعداد صفحه :
14
از صفحه :
45
تا صفحه :
58
كليدواژه :
پيش‌بيني يال , شباهت هوموفيلي , شباهت ساختاري , شبكه‌هاي اجتماعي
چكيده فارسي :
در سال‌هاي اخيرشبكه‌هاي اجتماعي مجازي روز به روز در حال رشد و تغيير هستند. يال‌هاي جديد نشان‌دهنده تعاملات ميان گره‌ها هستند و پيش‌بيني آن‌ها از اهميت بالايي برخوردار است. معيارهاي پيش‌بيني يال را مي‌توان به دو گروه مبتني بر همسايگي گره و مبتني بر پيمايش مسير تقسيم كرد. پژوهش‌گران ايجاد يال جديد در شبكه را از منظر نظري به دو علت نزديكي در گراف و هوموفيلي نسبت مي‌دهند. با وجود مطالعات بسيار در حوزه علوم شبكه مطالعه تأثير دو رويكرد نظري در كنار يكديگر در ايجاد يال‌ها مسئله‌اي باز محسوب مي‌شود و تاكنون معيارهاي شباهت مبتني بر همسايگي گره از اين منظر مطالعه نشده‌اند. در اين پژوهش مدلي ارائه كرديم تا با استفاده از آن از مزاياي هر دو رويكرد نزديكي در گراف و هوموفيلي استفاده كنيم و با استفاده از آن توانستيم بر دقت معيارهاي شباهت مبتني بر همسايگي گره بيفزاييم. براي ارزيابي اين پژوهش از دو مجموعه‌داده شبكه اجتماعي مجازي زنجان و شبكه اجتماعي مجازي پوكك استفاده شده است كه مجموعه‌داده نخست براي اين پژوهش جمع‌آوري و سپس تكميل شده است.
چكيده لاتين :
In recent years, with the growing number of online social networks, these networks have become one of the best markets for advertising and commerce, so studying these networks is very important. Most online social networks are growing and changing with new communications (new edges). Forecasting new edges in online social networks can give us a better understanding of the growth of these networks. Link prediction has many important applications. These include predicting future social networking interactions, the ability to manage and design useful organizational communications, and predicting and preventing relationships in terrorist gangs. There have been many studies of link prediction in the field of engineering and humanities. Scientists attribute the existence of a new relationship between two individuals for two reasons: 1) Proximity to the graph (structure) 2) Similar properties of the two individuals (Homophile law). Based on the two approaches mentioned, many studies have been carried out and the researchers have presented different similarity metrics for each category. However, studying the impact of the two approaches working together to create new edges remains an open problem. Similarity metrics can also be divided into two categories; Neighborhood-based and path-based. Neighborhood-based metrics have the advantage that they do not need to access the whole graph to compute, whereas the whole graph must be available at the same time to calculate path-based metrics. So far, above the two theoretical approaches (proximity and homophile) have not been found together in the neighborhood-based metrics. In this paper, we first attempt to provide a solution to determine importance of the proximity to the graph and similar features in the connectivity of the graphs. Then obtained weights are assigned to both proximity and homophile. Then the best similarity metric in each approach are obtained. Finally, the selected metric of homophily similarity and structural similarity are combined with the obtained weights. The results of this study were evaluated on two datasets; Zanjan University Graduate School of Social Sciences and Pokec online Social Network. The first data set was collected for this study and then the questionnaires and data collection methods were filled out. Since this dataset is one of the few Iranian datasets that has been compiled with its users' specifications, it can be of great value. In this paper, we have been able to increase the accuracy of Neighborhood-based similarity metric by using two proximity in graph and homophily approaches.
سال انتشار :
1398
عنوان نشريه :
پردازش علائم و داده ها
فايل PDF :
7755501
لينک به اين مدرک :
بازگشت