پديد آورندگان :
چراغ زاده، طيبه دانشگاه شهركرد - گروه رياضي كاربردي , قاسمي، مهدي دانشگاه شهركرد - گروه رياضي كاربردي , خوش سير، رضا دانشگاه شهركرد - گروه رياضي كاربردي , انصاري، عليرضا دانشگاه شهركرد - گروه رياضي كاربردي
كليدواژه :
معادلۀ انتشار -هم رفت كسري , كرانك - نيكلسون كسري , گرانوالد - لتنيكوف انتقال يافته , GMRES پيش شرط ساز شده
چكيده فارسي :
در اين مقاله معادله انتشار-هم رفت با مشتق مرتبه كسري را در نظر ميگيريم. براي به دست آوردن يك روش عددي، مشتقات كسري موجود در معادله با استفاده از تعاريف گرانوالد-لتنيكوف انتقال يافته جايگزين ميشوند. براي بهبود روش عددي ارائه شده، مشتقات جزئي معادله را با روش تفاضل متناهي كرانك-نيكلسون كسري گسستهسازي ميكنيم. همچنين نشان ميدهيم اين روش به صورت غير مشروط پايدار است. سپس با معرفي يك ماتريس پيششرط ساز، روش كمترين مانده تعميم يافته (GMRES) پيششرط ساز شده را براي حل دستگاه معادلات جبري بهدست آمده معرفي خواهيم كرد. در پايان با هدف تأييد نتايج نظري، با ارائه يك مثال روش GMRES پيششرط ساز شده را آزمايش ميكنيم.
چكيده لاتين :
Fractional differential equations (FDEs) have attracted much attention and have been widely used in the fields of finance, physics, image processing, and biology, etc. It is not always possible to find an analytical solution for such equations. The approximate solution or numerical scheme may be a good approach, particularly, the schemes in numerical linear algebra for solving a system, , emerging by discretizing the partial derivatives, with large and sparse dimensions. In the procedure of solving a specified FDE, if the dimension of the corresponding system of linear equations is small, one can use the direct methods or the classical iterative methods for the analysis of these systems. However, if the dimension is large, then the proposed methods are not effective. In this case, we use variants of the Krylov subspace methods that are more robust with respect to the computer memory and time. The GMRES (Generalized Minimal Residual) is a well-known method based on Krylov subspace that is used to solve a system of sparse linear equations with an non-symmetric matrix. A main drawback of iterative methods is the slowness of convergence rate which depends on the condition number of the corresponding coefficient matrix. If the condition number of the coefficient matrix is small, then the rate of convergence will be faster. So, we try to convert the original system to another equivalent system, in which the condition number of its coefficient matrix becomes small. A preconditioner matrix is a matrix that performs this transformation.
In this paper, we propose the iterative GMRES method, preconditioned GMRES method and examine capability of these methods by solving the space fractional advection-diffusion equation.
Material and methods
We first introduce a space fractional advection-diffusion equation in the sense of the shifted Grünwald-Letnikov fractional derivative. To improve the introduced numerical scheme, we discretize the partial derivatives of equation using the fractional Crank-Nicholson finite difference method. Then we use a preconditioner matrix and present preconditioned GMRES method for solving the derived linear system of algebraic equations.
Results and discussion
In this paper, we use the GMRES and preconditioned GMRES to solve a linear system of equations emerging by discretizing partial derivatives appearing in a Advection-Diffusion equation and then asset the accuracy of these methods. Numerical results indicate that we derive a smaller condition number of the equivalent coefficient matrix for different values of M and N, as dimensions of the corresponding linear equations. Hence the convergence rate increases and consequently the number of iterations and the calculation time decreases.
Conclusion The following conclusions were drawn from this research.