پديد آورندگان :
عرفاني، سعيد دانشگاه آزاد اسلامي - گروه مهندسي عمران، تهران , نكويي، مسعود دانشگاه صنعتي اميركبير - دانشكده مهندسي عمران و محيط زيست، تهران , اشتري لركي، امير دانشگاه آزاد اسلامي - گروه مهندسي عمران، تهران
كليدواژه :
قابهاي مهاربندي شده ي واگرا , تير پيوند , كوتاه تير , پيوند متوسط , تير پيوند بلند , مدل تحليلي
چكيده فارسي :
هدف از انجام اين پژوهش بسط و گسترش مدل تحليلي يكتا براي پيش بيني رفتار الاستيك و غيرالاستيك تيرهاي پيوند ميباشد، به نحوي كه براي انواع مختلف تير پيوند شامل تير پيوند كوتاه، متوسط و بلند قابل استفاده باشد. هنگامي كه قابهاي مهاربندي شدهي واگرا تحت اثر زلزلههاي شديد قرار ميگيرند، تيرهاي پيوند از خود رفتار غيرالاستيك نشان ميدهند، درحاليكه تيرهاي خارج از ناحيهي تير پيوند، ستونها و مهاربندها به نحوي طراحي شدهاند كه در محدودهي الاستيك باقي بمانند. براي انجام تحليلهاي غيرخطي مناسب بر روي قابهاي مهاربندي شدهي واگرا، نياز به مدلي تحليلي ميباشد كه بتواند با دقت زيادي رفتار غيرالاستيك تيرهاي پيوند را پيش بيني كند. طبق اطلاع نويسندگان، در حال حاضر تنها براي تيرهاي پيوند كوتاه مدل تحليلي ارائه شده است. در اين پژوهش يك مدل تحليلي ارائه شده است كه ميتواند با دقيت بسيار زيادي مقادير بيشينه و همچنين مقادير مياني نيروها و تغيير شكلهاي تيرهاي پيوند كوتاه، متوسط و بلند را پيش بيني كند. پارامترهاي مدل بر اساس نتايج چندين آزمايش صورت گرفته بر روي تيرهاي پيوند و قابهاي مهاربندي شدهي واگرا كاليبره شدهاند. مقايسه نتايج به دست آمده از مدلسازي عددي با منحنيهاي هيسترسيس آزمايشها نشان دهندهي دقت بسيار بالاي مدل تحليلي ارائه شده ميباشد. استفاده از مدل پيشنهادي جهت انجام تحليلهاي غيرالاستيك بر روي قابهاي مهاربندي شدهي واگرا توصيه ميشود.
چكيده لاتين :
The purpose of this study is to develop the previous proposed analytical model by the first and second authors for short links, so it can be used for all kinds of links including short, intermediate, and long links. Eccentrically braced frames (EBF) offer high lateral stiffness because of their braced configuration while also providing high ductility and energy dissipation. They are widely used as a lateral-force resisting system for multi-story buildings located in seismic areas. The key components of the EBF system include columns, collector beams, braces and active links. The link is defined by a horizontal eccentricity between the intersection points of the two brace centerlines with the beam centerline (or between the intersection points of the brace and column centerlines with the beam centerline for links adjacent to columns). The active links are designed to provide ductility and energy dissipation through yielding under design basis earthquakes, while all other structural members are designed to be stronger than the links and stay in elastic range. The link length is often normalized with respect to the ratio between the plastic moment capacity and the plastic shear capacity of the link section. This normalized link length is called the length ratio. Links with a length ratio less than 1.6, called short or shear links, yield primarily in shear and can be designed for 0.08 radian inelastic rotation. Links with length ratio greater than 2.6, called long links, form flexural hinges at either end and can be designed for 0.02 radian inelastic rotation. Links with length ratios between 1.6 and 2.6, called intermediate links, experience a combination of flexural and shear yielding and can be designed for inelastic rotations between 0.02 and 0.08 radian depending on the length ratio. Sufficient analytical model which can accurately predict the inelastic performance of the links is needed to perform reliable nonlinear analyses of EBFs. Analytical models that are used to study the inelastic seismic response of the EBFs usually reflect the anticipated behavior of the different frame elements. Links are modeled as inelastic elements with concentrated end flexural and shear hinges. Beams outside of the link, braces, and columns are typically modeled as elastic beam-column elements, because no inelastic behavior is anticipated in design. It is said in the literature that available analytical models for short links generally predict very well the maximum shear forces and deformations from experiments on short links, but may underestimate the intermediary values. In this study it is shown that available analytical models do not predict very well the maximum shear forces and deformations too. To the authors’ knowledge, currently there are only suitable analytical models for short links. In this study an analytical model which can accurately predict both maximum and intermediary values of forces and deformations for short, intermediate, and long links, is proposed. The parameters of model are established based on test results from several experiments on links and EBFs. Comparison of available test results with the hysteresis curves obtained using the proposed analytical model established the accuracy of the model. The proposed model is recommended to be used to perform inelastic analyses of EBFs.