كليدواژه :
شيب چند لايه , شمع , ضريب بهسازي , روش piv , مدلسازي فيزيكي
چكيده فارسي :
افزايش ميزان رطوبت لايههاي خاك در شيب باعث گسيختگي شيبها ميگردد. هدف اصلي اين مطالعه، بررسي مكانيزم گسيختگي در شيبهاي چند لايه تحت تاثير افزايش ميزان رطوبت لايههاي خاك ميباشد. براي اين منظور با استفاده از تحليلهاي عددي و مطالعات آزمايشگاهي تاثير موقعيتهاي مختلف قرارگيري شمعها در شيب تحت شرايط مختلف اشباع شدگي لايهها مورد بررسي قرار گرفته است. نتايج مطالعات انجام شده نشان ميدهند سطح لغزش ايجاد شده در شيبهاي چند لايه اشباع، بسته به موقعيتهاي مختلف قرارگيري شمعها و شرايط متفاوت اشباع شدگي لايهها متفاوت از يكديگر ميباشند. نتايج مطالعات نشان ميدهند عامل افزايش رطوبت در ميان لايه رسي بيشترين تاثير را در سطح لغزش ايجاد شده در شيب و ساير پارامترهاي مورد مطالعه از قبيل نسبت ظرفيت باربري پي هاي مستقر بر تاج شيب و نسبت بهسازي ضريب اطمينان پايداري شيب دارد. نتايج به دست آمده از مطالعت عددي و آزمايشگاهي نشان ميدهند براي افزايش پايداري، نصب شمع در نزديكي وسط شيب بيشترين كارايي را دارد. در صورتي كه بهينه موقعيت نصب شمع براي افزايش ظرفيت باربري پيهاي مستقر بر شيب بستگي به شرايط پايداري شيب قبل از اعمال سربار در تاج و شرايط اشباع شدگي لايههاي خاك در شيب داشته و در اغلب موارد در نزديكي تاج شيب ميباشد. مقايسه نتايج مطالعات آزمايشگاهي و عددي نشان ميدهند همخواني نسبتا مناسبي بين نتايج مدلهاي فيزيكي با نتايج تحليلهاي عددي وجود دارد.
چكيده لاتين :
Increasing water in the slope layers induced the failure of slopes. . Water is the most important factor in most of the
slope stability analysis. Although water does not directly lead to the slopes displacement, but is an important factor for
the following reasons: (1) water increases due to rainfall and snow melt will lead to increasingslope weight. (2) Water
can change the angle of slope (angle of slope is an angle that slope is stable in this angle). (3) Water can be absorbed or
excreted by minerals are available in the soil. After adding the water, the weight of the rock and soil increases. (4)
Water can dissolve the cement between the seeds and cohesion between the seeds is lost. In this paper, the feasibility of
using piles to stabilize layered earth slopes were studied. A set of physical modeling of foundations was performed
adjacent to layered slopes. The deformation pattern and shear strains of soil near slope and below surcharge load were
studied. For this purpose, a comprehensive set of tests and numerical analysis were undertaken on different slope
models. In each step of loading, digital image of deformed soil was captured and image processing was applied with
GeoPIV software for investigation of soil deformation on slope and below the footing. the effect of pile and saturated
conditions effects on improvement ratio (safety factor of stabilized slope with pile / safety factor of the slope stability
without piles), bearing capacity of foundations, slope stability and slip surface shape in layered slope were investigated.
The results show that the slip surface of layered slopes differs depending strongly on the installed pile positions and
layered saturation conditions. In consideration of the model tests and numerical analysis results, it is found that, when
clayey layer was near ground surface, changes in clayey layers water content significantly affected on slip surface and
layered slope stability. Consideration of slipe surface shape for different layers saturation canditions, it is found,
saturation of below layers which is located below the slip surface, has not significant effects on slope stability and slip
surface shape. But with increasing upper layers water content, large volume of soil were failed. Experimental and
numerical results show, for stable slope before applied surcharge load or before water content increases, critical slipe
surface occurred in front the installed pile. But for unstable slope, critical slip surface positions depend on layers
saturation and soil properties and occurred in front or behind or in upper and lower part of pile. In general The critical
slip surface location dependent on water table level conditions and location of pile. Also from the experimental and
numerical results it is found, the optimum location of pile for increasing bearing capacity of foundation which is located
on slope crest, is near slope crest and maximum magnitude of Bearing capacity ratio ((bearing capacity of reinforced
slope/ bearing capacity of non- reinforced slope)(BCR)) was obtained when piles installed near slope crest. Also
optimum location of pile for increasing slope stability are found near mid of slope. A close agreement between the
experimental and numerical results in Failure mechanism and the critical values of the studied parameters is observed