كليدواژه :
قاب بتن مسلح , CFRP , شاخص قابليت اعتماد , روش نمونه برداري با اهميت
چكيده فارسي :
در تحقيق حاضر الگوي بهينه براي تقويت قاب بتنآرمه با لايههاي CFRP با استفاده از تحليل قابليت اعتماد ارائه شده است. پس از انجام صحت سنجي و اطمينان از نتايج حاصل از مدلسازي در نرمافزار اپنسيس، قابليت اعتماد قاب بتنمسلح 8 طبقه تحت سه ركورد زلزله و 5 الگوي تقويت ابتدا با استفاده از روش قابليت اعتماد نمونهبرداري با اهميت تعيين شده، سپس دقت روش با روش شبيهسازي مونتكارلو سنجيده شده است. بر پايه نتايج تحليل قابليت اعتماد، مقدار طول بهينه متناظر با حداكثر مقدار شاخص قابليت اعتماد ( ) براي هر يك از ركوردهاي زلزله تعيين شده است. بررسي نتايج نشان ميدهد كه افزايش طول تقويت منجر به افزايش شاخص قابليت اعتماد نشده و از مقدار آن كاسته ميشود. روش مونتكارلو براي انجام محاسبات به تعداد زيادي از نمونههاي شبيهسازي نياز دارد كه با انتخاب روش نمونهبرداري با اهميت و مقدار مناسب متغيرهاي تصادفي براي شروع تحليل تعداد نمونههاي شبيهسازي و زمان انجام محاسبات به طور چشمگيري كاهش مييابد.
چكيده لاتين :
One of the methods for the seismic strengthening in structural engineering is using FRP composites. These
composite has some advantages such as increase in ductility, stiffness and lateral strength, the ability to adapt
with the architecture, and also the minimum weight added to the structure. Uncertainty in the structure is due
to reasons such as the lack of prediction of additional loads over the lifetime of the structure, the inadequate
knowledge of the mechanical properties of the materials, the existence of human errors and the simplifications
in analytical relations for modeling, and makes reliability analysis of structural inevitable. The First-Order
Reliability Method (FORM) and Monte Carlo Simulation (MCS) are the most common and accurate methods
of reliability analysis. Structural reliability analysis leads to the construction of an acceptable safety grade
structure. In this paper, an optimal pattern for reinforcing RC frame with FRP layers is presented using
reliability analysis. Carbon fiber reinforced polymers (CFRP) are used to increase the shear strength of existing
RC frame. The beams and columns are wrapped by the CFRP layers at the ends, and in the reinforcing patterns,
the reinforced beams are assumed to be constant and the difference is in length of the reinforcement of the
column. After verifying and ensuring the results of modeling, the seismic behavior of the 8-story RC frame
was assessed by nonlinear time history analysis (NTHA) with finite element program OpenSees under three
far-field records earthquake from fault TABAS, Borah Peak and Imperial-Valley. Four random variables
represented the variation in compressive strength of concrete, yield strength of steel, live load, and elasticity
modulus of CFRP materials are defined and the limit state function defined to perform reliability analysis
based on the maximum drift ratio inter-story. The reliability analysis of RC frame under three earthquake
records and five reinforcement patterns was first determined using the Importance Sampling Method (ISM),
and then the accuracy of the method was measured using MCS. Based on the results of the reliability analysis,
the optimal length value corresponding to the maximum value of the reliability index ( ) for each earthquake
record is determined. Survey results show that increasing the length of the reinforcement does not lead to an
increase in the reliability index and even decreases with the inappropriate reinforcing length. The results of
reliability analysis show that the number of layers of CFRP is not considered safe for Borah Peak record and
requires more layers to reinforce. The optimum lengths of reinforcement in TABAS and Borah Peak
earthquakes are 20% of the length of the column and in the Imperial-Valley record is 30% of the length of the
column, while with a change of 5% of the length strengthening, the reliability index is significantly reduced.
The most accurate method for analyzing reliability and calculating the probability of structural failure is MCS,
but this method requires a large number of simulation samples to perform calculations. Which significantly
reduces the number of simulation samples and the time to perform calculations by selecting the ISM method
and the appropriate amount of random variables to begin the analysis.