شماره ركورد :
1188134
عنوان مقاله :
بررسي حذف فوتوكاتاليتيك بخار تولوئن از هوا در بستر جذبي-فوتوكاتاليتيكي
عنوان به زبان ديگر :
Photocatalytic removal of toluene vapor from air in the adsorption-photocatalytic bed
پديد آورندگان :
كاظمي، سميرا دانشگاه علوم پزشكي قزوين - پژوهشكده پيشگيري از بيماريهاي غير واگير - مركز تحقيقات عوامل اجتماعي موثر بر سلامت , صفري وارياني، علي دانشگاه علوم پزشكي قزوين - پژوهشكده پيشگيري از بيماريهاي غير واگير - مركز تحقيقات عوامل اجتماعي موثر بر سلامت , خوشنواز، حديث دانشگاه علوم پزشكي قزوين - پژوهشكده پيشگيري از بيماريهاي غير واگير - مركز تحقيقات عوامل اجتماعي موثر بر سلامت , نيك پي،‌ احمد دانشگاه علوم پزشكي قزوين - پژوهشكده پيشگيري از بيماريهاي غير واگير - مركز تحقيقات عوامل اجتماعي موثر بر سلامت
تعداد صفحه :
13
از صفحه :
75
از صفحه (ادامه) :
0
تا صفحه :
87
تا صفحه(ادامه) :
0
كليدواژه :
كيفيت هوا در محيط هاي داخلي (IAQ) , دي اكسيد تيتانيوم (TiO2) , كربن فعال , تركيبات آلي فرار , تولوئن , اكسيداسيون فوتوكاتاليتيكي , بستر جذبي- فوتوكاتاليتيكي
چكيده فارسي :
زمينه و هدف : كيفيت هوا در محيط هاي داخلي يكي از موضوعات مهم در حوزه سلامت مي ­باشد كه در چند سال اخير و با تغيير در الگو­هاي زندگي مورد توجه قرار گرفته است. تولوئن يكي از تركيبات آلي با كاربرد گسترده صنعتي مي ­باشد. اين تركيب­ ها به دليل فشار بخار بالايي كه دارند از پتانسيل انتشار و ايجاد مواجهه تنفسي در فرآيندهاي ساخت و حتي در هنگام استفاده از محصولات كه در ساخت آنها استفاده شده­اند برخوردار هستند. با توجه به اثرات بهداشتي تركيبات آلي فرار، كنترل آنها پيش از تخليه به محيط زيست و همچنين ارائه روش ­هايي براي كنترل آنها در محيط ­هاي داخلي ضروري به نظر مي­رسد. فرآيند اكسيداسيون فوتوكاتاليتيكي تركيبات آلي فرار يكي از روش­ هاي موثر و همسو با محيط زيست در زمينه حذف تركيبات آلي فرار محسوب مي­ شود. مهم­ترين محدوديت اين روش، وابستگي حذف آلاينده به شيمي سطح و زمان ماند آلاينده بر سطح بستر مي­باشد. در اين مطالعه به منظور بهبود افزايش زمان ماند و بهبود كارايي حذف، از مخلوطي از دي­ اكسيد تيتانيوم و كربن فعال در ساخت بستر جذبي- فوتوكاتاليتيكي استفاده شد. اين مطالعه با هدف بررسي كارايي حذف بخار تولوئن در بستر جذبي-فوتوكاتاليتيكي انجام گرديد. مواد و روش كار : در اين پژوهش، از دي اكسيد تيتانيوم و مخلوط دي اكسيد تيتانيوم و كربن فعال پودري محلول در آب مقطر جهت ساخت بستر فوتوكاتاليتيكي و بستر جذبي- فوتوكاتاليتيكي استفاده شد. لايه نشاني بسترها به روش غوطه ­ور سازي بستر پشم شيشه انجام شد. بررسي توزيع سايزي ذرات و كيفيت لايه نشاني به روش ميكروسكوپ الكتروني انجام گرديد. كارايي اكسيداسيون فوتوكاتاليتيكي تولوئن در دو رآكتور مجزا در حضور تابش فرابنفش مورد بررسي قرار گرفت. طراحي آزمون­ها به منظور بررسي تاثير غلظت اوليه تولوئن و گذر حجمي جريان بر كارايي حذف فوتوكاتاليتيكي در سيستم ­هاي فوتوكاتاليتيكي و جذبي-فوتوكاتاليتيكي با استفاده از روش سطح پاسخ (RSM )انجام شد. يافته­ها : نتايج نشان داد كه راندمان حذف و ظرفيت حذف تولوئن در بسترهاي فوتوكاتاليتيكي و جذبي- فوتوكاتاليتيكي متأثر از گذر حجمي جريان و غلظت ورودي آلاينده به سيستم بود. در شرايط بهينه عملياتي، راندمان حذف در بسترهاي فوتوكاتاليتيكي و جذبي- فوتوكاتاليتيكي به ترتيب در بارگذاري 5/84 و 65/1 ميلي­گرم به ازاي متر مكعب در ثانيه و زمان ماند 2 و5/8 ثانيه، 98/99% و 14/95 % به دست آمد و ظرفيت حذف نيز در نقاط بهينه عملياتي در دو فوتوكاتاليست جذبي و غير جذبي 71/5008 و 85/1204 ميلي­گرم به ازاي هر متر مكعب در دقيقه بود. نتيجه­ گيري : بسترهاي حذف فوتوكاليتيكي از كارايي خوبي در زمينه حذف تركيبات آلي در محيط هاي داخلي، برخوردار هستند. تلفيق آنها با جاذب هاي سطحي منجر به توسعه بسترهاي خودپالاي جذبي-كاتاليتيكي مي­ شود كه ظرفيت حذف آلاينده را تا 5 برابر بسترهاي كاتاليتيكي بهبود بخشيده و زمينه ساز كوچك سازي بستر كنترلي و امكان استفاده از آنها را در سيستم­ هاي تصفيه هواي خانگي و صنعتي فراهم مي­ نمايد. افزايش كارايي حذف در بسترهاي جذبي- فوتوكاتاليتيكي با افزايش هواگذر به دليل كاسته شدن از ضخامت لايه مرزي و بهبود انتقال جرم از جريان هوا به سايت هاي جذبي و كاتاليتيكي مي­باشد.
چكيده لاتين :
Background and aims: Clean air is one of the most important components of health and sustainable development. Every person breathes about 10 kg of air per day and if it contains pollutants, it will have a serious impact on their health. Indoor air quality (IAQ) is one of the major health issues that have been addressed in recent years with changes in lifestyle patterns. Usually, due to the increased time of presence and activity in these environments and reduced air exchange with the outdoor environment, indoor air quality is poorer than outdoor environments. Toluene is a Volatile organic compound with widespread applications. VOCs has a high vapor pressure and high emission rate to environment. Due to its adverse effects on human and environment health, they must be controlled before discharging to the environment. Photo catalytic oxidation process is one of the environmentfriendly and effective methods for the remove the organic compounds from the air which likely to be better in combination with other methods such as adsorption. Through the process of PCO, UV radiation adsorption on TiO2 is associated with forming electron and holes from electron escape. The resulted electrons have got high levels of oxidation power and act as a strong oxidant producing superoxide ion. The resulted holes have good oxidation potential; with superoxide ions, they make good conditions for oxidation of most organic compounds to less hazardous compounds such as carbon dioxide and aqueous vapor. The most important limitation of Photo catalytic oxidation process is the dependence of the contaminant removal on the surface chemistry and the residence time of the contaminant on the photo catalyst surface. The most important limitation of the adsorption method is the decrease in adsorption removal efficiency and elimination capacity due to the filling of the adsorption sites. According to this, by combining adsorption and photo catalytic oxidation, it is possible to increase the time of contaminant presence at photo catalytic oxidation sites and to enhance the surface chemistry and on the other hand, to restore the adsorption sites. This study is conducted with the aim at examining the effects of combination Activated carbon and Titanium dioxide (TiO2) on the toluene removal efficiency. Methodols: In order to prepare samples, 5g of TiO2 and 5g of TiO2 and 1g of activated carbon dissolve in separate 100 ml distilled water under vigorous stirring. The surface modification was done by dip-coating method. The efficiency of the photocatalytic oxidation of toluene is evaluated in two separate reactors exposed to ultraviolet light. Additionally, to investigate the effect of initial concentration of toluene and airflow rate on the photocatalytic removal efficiency in photocatalytic and photocatalytic-adsorption beds, the RSM method was used to design experiments. Also, Scanning Electron Microscopy was used to determine catalysts surface morphology. First, to obtain the adsorption capacity in both reactors, with the UV lamp being off, the considered concentrations were added to the reactors in 2-5 L/m airflows. Then, adsorption capacity of adsorption beds were evaluated according to the time needed for the outlet concentration to reach 10% of the inlet amount, as the fraction point of the adsorbent and saturated capacity. Next, to compare the removal efficiency of toluene in the two reactors, the lamps were immediately turned on; concentrations were gradually decreased and when the outlet concentration was balanced, the data was collected. Results: Images from an electron microscope of surfaces of the two catalysts showed that the distribution of nanoparticles on glass wool was similar and the particle size in the noncombined catalyst were smaller than 95 nm, and smaller than 87 nm in the adsorbent catalyst. In other words, the size of nanoparticles led to more contact area of the pollutant with the catalyst, increased reaction as well as removal efficiency. SEM photography confirmed that, combining TiO2 with activated carbon, the pores in the activated carbon were occupied and it made a good place for TiO2. Controlling the process of photocatalytic elimination in photocatalysts indicated that in TiO2-AC reactor, removal efficiency and elimination capacity of toluene were higher than TiO2 reactor and combining adsorbent with photocatalyst may lead to enhanced photocatalytic oxidation efficiency of organic compounds. The results illustrate that the removal efficiency and elimination capacity of toluene in photocatalytic and photocatalytic-adsorption beds are Influenced by airflow rate and inlet concentration of toluene. In optimized operational conditions, the removal efficiency in both combined and non- combined reactors in inlet loadings of 84.5 and 1.65 mg/m3.s and retention time of 2 and 8.5 s, was 99.98% and 95.14%, respectively. Also, elimination capacity in optimized operational points in the two absorbent and non-absorbent photocatalysts was 5008.71 and 1204.85 mg/m3.min, respectively. As the statistical analysis by Minitab indicated, in the concentration range of 10-40 ppm and the airflow of 2-5 L/min (in 2-8.5 s retention time) in the combined reactor, the removal efficiencies were 90% (min.) and 99% (max.); however, in the non-combined reactor, the minimum of removal efficiency was 10% and the maximum was 90%. The results of this study also indicated that the retention time had a significant effect on the removal efficiency and the elimination capacity of toluene, that is, at the constant inlet concentration (25 ppm) increased with increase in retention time of the non-composite reactor. However, in the adsorbent reactor, lower retention time led to higher removal efficiency. According to the results, toluene removal efficiency and elimination capacity levels in the combined reactor in time retentions of 2, 3.3 and 8.5 s increased compared to the non-combined reactor. Also, evaluation of the effects of initial toluene concentration on removal efficiency and elimination capacity showed that they were higher in the combined vs the non-combined reactor. Removal efficiency of both photocatalysts was influenced by the initial concentration of toluene, so that, in TiO2 higher inlet concentration led to lower removal efficiency. Nevertheless, in the adsorbent photocatalyst, there was an increase in removal efficiency with higher concentrations. According to the findings, the production of CO2 was dependent on toluene inlet concentration and the airflow. In the combined photocatalyst, the minimum and maximum of the produced carbon dioxide were 40 ppm and 80 ppm, respectively. an‎d it was 84.82 in the optimum operational point (46.2 ppm; 5.62 L/min). However, in the non-combined reactor, the produced CO2 was 29.2 ppm in the optimum operational point and its minimum and maximum were 10 ppm and 25 ppm, respectively. The results also reported that in the given concentration and airflow, production of CO2 in TiO2-AC reactor was higher than TiO2. Conclusion: Results of the present study indicated that combining titanium dioxide with activated carbon adsorbent is a useful method in removing toluene gas from air under UV and combining photocatalytic elimination with adsorption process by activated carbon led to increased removal efficiency. Self-cleaning photocatalyst had high efficiency in the present study and the use of photocatalytic-adsorption bed can as a suitable method with high removal efficiency causing adsorption and treatment of the pollutants. In other word, combination Activated carbon with Titanium dioxide improved the functionality of activity of photocatalytic oxidation through promoting adsorption sites and increasing residence time of the pollutant in the bed. Results also indicated that removal efficiency was influenced by initial concentration of toluene and retention time of pollutants on the bed and optimizing these parameters may lead to maximum efficiency in photocatalytic setups. The combined catalysts with surface adsorbents led to improved decomposition efficiency based on photocatalytic decomposition and it is likely that the improvement is mostly the result of increasing adsorption sites compared to limited adsorption sites found in the photocatalyst. On the other hand, with more adsorption site, the pollutant had much more time to have contact with photocatalysts and consequently improved circumstances for surface oxidation reactions.
سال انتشار :
1398
عنوان نشريه :
سلامت كار ايران
فايل PDF :
8238503
لينک به اين مدرک :
بازگشت