پديد آورندگان :
آقاخاني افشار، اميرحسين دانشگاه تبريز - دانشكده مهندسي عمران - گرايش سازه هاي هيدروليكي، تبريز , حسن زاده، يوسف دانشگاه تبريز - دانشكده مهندسي عمران، تبريز , فرخي، علي دانشگاه آزاد اسلامي واحد مشهد - گروه مهندسي عمران، مشهد
كليدواژه :
تجزيه و تحليل عدم قطعيت , واسنجي چند ايستگاهه , SWAT , الگوريتم DREAM-ZS
چكيده فارسي :
سابقه و هدف: كمي سازي عدم قطعيت هاي پارامترهاي مدل هاي هيدرولوژيكي نقش اساسي در مديريت منابع آب ايفا مي كنند و امري چالش برانگيز مي باشد كه به علت تعداد زياد پارامترها و نبود درك فيزيكي مناسبي از آنها، اين مدل ها در مرحله واسنجي با مشكل مواجه مي شوند. با توجه به اهميت منابع آبي در كشور و ضرورت بررسي عدم قطعيت به منظور دستيابي به نتايج قابل اعتماد، هدف از اين تحقيق، بررسي، شناسايي و كمي سازي عدم قطعيت پارامترها ابزار ارزيابي خاك و آب (SWAT) و عملكرد آنها جهت پيش بيني رواناب حوضه آبخيز رودخانه كشف رود به عنوان يك حوضه بزرگ مقياس نيمه خشك در شمال شرق ايران با استفاده از يك روش شبيه سازي مبتني بر زنجيره مونت كارلو زنجير ماركف بنام الگوريتم تكامل تفاضلي تطبيقي متروپوليس (DREAM-ZS) مي باشد.
مواد و روش ها: جهت ارزيابي عدم قطعيت از ميان 29 پارامتر موجود تنها 20 پارامتر بر مبناي روش تحليل حساسيت منطقه اي (RSA) به عنوان پارامترهاي حساس انتخاب و بررسي شدند. به منظور بهينه سازي مدل و كمي سازي عدم قطعيت پارامترها، از سناريوهاي S1 (سناريوي اول) و S2 (سناريوي دوم) كه متعلق به الگوريتم DREAM-ZS مي باشند، استفاده گرديد. در بررسي انجام شده محدوده هاي پارامترهاي پيشين در سناريوي S1 به كمك واسنجي نهايي محدوده پارامترها در نرم افزار SWAT-CUP و الگوريتم SUFI-2 تعيين گرديد و محدوده هاي پيشين در سناريوي S2 با استفاده از يك رويكرد تركيبي بين محدوده هاي پارامترهاي پيشين در برنامه SWAT-CUP و محدوده هاي پسين در سناريوي S1 تعيين گرديد. در اين تحقيق، تابع درست نمايي حداقل مربعات استاندارد (SLS)، جهت واسنجي مدل هيدرولوژيكي SWAT مورد استفاده قرار گرفت. همچنين، جهت بررسي عملكرد عدم قطعيت مدل در دو سناريوي اشاره شده از معيارهاي ارزيابي شامل فاكتور P، فاكتور d، ناش-ساتكليف (NS)، شاخص عدم قطعيت كل (TUI) و دامنه انحراف ميانگين (ADA) استفاده گرديد.
يافته ها: نتايج معيارهاي ارزيابي P، d، NS، TUI و ADA نشان داد كه سناريوي S2 نسبت به سناريوي S1 در كاهش عدم قطعيت هاي پيش بيني از عملكرد بهتري برخوردار است. براساس سناريوي S1، ضريب NS از 0.54 تا 0.72 حاصل گرديد، در حاليكه در سناريوي S2مقدار اين ضريب از 0.63 تا 0.78 بدست آمده است. شاخص TUI براي عدم قطعيت كل محدوده 0.2 تا 0.6 و 0.22 تا 0.66 به ترتيب براي سناريوهاي S1 و S2 حاصل گرديد. در ادامه نتايج شبيه سازي هاي S1 و S2 نشان داد كه براي عدم قطعيت پارامترها ضريب ارزيابي TUI در محدوده هاي 0.63 تا 0.94 براي سناريوي S1 و از 0.74 تا 1.22 براي سناريوي S2 مي باشد. در نهايت شاخص ADA نيز براي عدم قطعيت كل برابر 0.098 و 0.445 به ترتيب براي سناريوهاي S1 و S2 حاصل گرديد، در حاليكه با توجه به شبيه سازي هاي S1 و S2، شاخص ADA براي عدم قطعيت پارامترها به ترتيب برابر 0.098 و 0.451 براي سناريوهاي S1 و S2 بدست آمد.
نتيجه گيري: الگوريتم DREAM-ZS راندمان واسنجي مدل را بهبود بخشيد و منجر به ارائه مقادير واقعي تري از پارامترهاي شبيه سازي رواناب توسط مدل SWAT در حوضه رودخانه كشف رود مي گرديد.
چكيده لاتين :
Background and Objectives: Quantifying the uncertainties of the parameters of hydrological models are the role of great importance in water resource management and is a challenge that due to the large number of parameters and lack of proper physical understanding of them, these models face problems in the calibration stage. Considering the importance of water resources in Iran and the need to investigate uncertainty in order to achieve reliable results, the purpose of this study is to investigate, identify and quantify parameters uncertainty of Soil and Water Assessment Tool (SWAT) and their performance to predict watershed runoff. The Kashfrood river is a semi-arid large-scale basin in northeastern Iran using a Monte Carlo chain-based Markov chain simulation method called the Differential Evolution Adaptive Metropolis algorithm (DREAM-ZS).
Material and Methods: With the purpose of assess the uncetainty in this study only 20 out of 29 available parameters were selected and evaluated based on Regional Sensitivity Analysis (RSA) as sensitive parameters. In order to optimize the model and quantify the parameters uncertainty, scenarios S1 (first scenario) and S2 (second scenario), which belong to the DREAM-ZS algorithm, have been defined. The prior parameter ranges of the S1 scenario were determined using the final calibration of parameter ranges in SWAT-Calibration and Uncertainty Program (SWAT-CUP) software and Sequential Uncertainty Fitting version 2 (SUFI 2) algorithm, and the prior ranges of the S2 scenario were determined using a compromising approach between the prior ranges of the SWAT-CUP and posterior ranges from S1 scenario. In this study, the parameters, uncertainties and statistical analysis have to be computed via an appropriate likelihood function. Therefore, the Differential Evolution Adaptive Metropolis (DREAM-ZS) combined with the standard least squares (SLS) as a simple formal likelihood function. Also, to evaluate the performance of the model uncertainty in the two mentioned scenarios, evaluation criteria including P-factor, d-factor, Nash–Sutcliffe (NS), Total Uncertainty Index (TUI) and Average Deviation Amplitude (ADA) were used.
Results: P-factor, d-factor, Nash–Sutcliffe (NS), Total Uncertainty Index (TUI) and Average Deviation Amplitude (ADA) showed that the S2 scenario has a better performance than scenario S1 in reducing forecast uncertainties. According to S1 simulation, the NS coefficient ranged from 0.54 to 0.72, while in S2 simulation, it ranged from 0.63 to 0.78. The TUI for total uncertainty was in a range of 0.2–0.6 and 0.22–0.66 for S1 and S2 scenarios, respectively. The S1 and S2 simulations led to the TUI of 0.63–0.94 and 0.74–1.22 for parameter uncertainty, respectively. Finally, ADA index for total uncertainty was 0.098 and 0.445 for S1 and S2 scenarios, while in accordance to S1 and S2 simulations, the ADA index for parameter uncertainty was 0.098 and 0.451, respectively.
Conclusion: The DREAM-ZS algorithm improved the calibration efficiency of the model and led to the presentation of more real values of runoff simulation parameters by the SWAT model in the Kashafrood River Basin.