عنوان مقاله :
ﺗﺸﺨﯿﺺ ﺗﻮﻣﻮر ﻣﻐﺰي در ﺗﺼﺎوﯾﺮ MRI ﺳﻪﺑﻌﺪي ﺑﺎ اﻋﻤﺎل آﻧﺘﺮوﭘﯽ ﮐﺎﭘﻮر و اﻟﮕﻮرﯾﺘﻢ اﻧﺒﺎﺷﺘﻦ داﻧﻪاي
عنوان به زبان ديگر :
Brain Tumor Detection in 3D MRI images using Kapur's Entropy and flood fill algorithm
پديد آورندگان :
ﻧﻈﺎم زاده ﻗﺮا، ﻣﺼﻄﻔﯽ داﻧﺸﮕﺎه ﻟﺮﺳﺘﺎن - ﮔﺮوه ﻣﻬﻨﺪﺳﯽ ﺑﺮق , ﻣﻬﺮداد، وﺣﯿﺪ داﻧﺸﮕﺎه ﻟﺮﺳﺘﺎن - ﮔﺮوه ﻣﻬﻨﺪﺳﯽ ﺑﺮق
كليدواژه :
MRI سه بعدي , مورفولوژي سه بعدي , الگوريتم انباشتن دانه اي , آنتروپي كاپور
چكيده فارسي :
ﺗﻮﻣﻮر ﻣﻐﺰي ﯾﮑﯽ از ﻋﻮاﻣﻞ ﻣﻬﻢ در ﻣﺮگ و ﻣﯿﺮ اﺳﺖ ﺑﻪ ﻫﻤﯿﻦ ﻣﻨﻈﻮر ﺗﺸﺨﯿﺺ ﺑﻪﻣﻮﻗﻊ و ﻣﻨﺎﺳﺐ ﺑﺮاي درﻣـﺎن ﺗﻮﻣـﻮر ﺿـﺮوري اﺳـﺖ. در اﯾﻦ ﭘﮋوﻫﺶ از ﺗﺼﺎوﯾﺮ ﺳﻪﺑﻌﺪي ﺑﺮاي ﺗﺸﺨﯿﺺ ﺗﻮﻣﻮر اﺳﺘﻔﺎده ﻣﯽﮔﺮدد. ﺗﺼﺎوﯾﺮ ﺳﻪﺑﻌﺪي داراي ﻋﻤﻖ ﻣـﯽﺑﺎﺷـﻨﺪ و از اﯾـﻦ ﺟﻬـﺖ، ﻧﻘﺎط ﮐﻮري ﮐﻪ ﻣﻤﮑﻦ اﺳﺖ در ﺗﺼﺎوﯾﺮ دوﺑﻌﺪي ﭘﻨﻬﺎن ﺑﻤﺎﻧﺪ را ﻣﯽﺗﻮان ﻣﺸﺎﻫﺪه ﻧﻤﻮد. در اﯾﻦ ﻣﻘﺎﻟﻪ ﯾﮏ روش آﺳﺘﺎﻧﻪﮔﯿﺮي ﺑﺎ اﺳـﺘﻔﺎده از آﻧﺘﺮوﭘﯽ ﮐﺎﭘﻮر ﺑﺮاي ﺗﺸﺨﯿﺺ ﺗﻮﻣﻮر ﻣﻐﺰي در ﺗﺼﺎوﯾﺮ MRI ﺳﻪﺑﻌﺪي اراﺋﻪ ﻣـﯽﺷـﻮد. در روش ﭘﯿﺸـﻨﻬﺎدي اﺑﺘـﺪا ﺑـﻪ ﻣﻨﻈـﻮر ﻣﺘﻤـﺎﯾﺰ ﺳﺎﺧﺘﻦ ﻧﺎﺣﯿﻪ ﺗﻮﻣﻮر، ﺗﺼﺎوﯾﺮ ﺑﻪﺻﻮرت ﺳﻪﺑﻌﺪي ﻧﺮﻣﺎﻟﯿﺰه ﻣﯽﮔﺮدﻧﺪ ﮐﻪ اﯾﻦ ﻣﺰﯾﺖ را دارد ﺳﻄﺢ روﺷﻨﺎﯾﯽ ﺗﻮﻣﻮر ﻧﺴﺒﺖ ﺑـﻪ ﺑﻘﯿـﻪ ﻧﻘـﺎط ﻣﻐﺰ روﺷﻦﺗﺮ ﺷﻮد. در ﻣﺮﺣﻠﻪ ﺑﻌﺪ ﺗﺼﻮﯾﺮ ﺳﻪﺑﻌﺪي در ﺳﻪﺟﻬﺖ ﺑﺮش داده ﺷﺪه و ﺑـﻪ ﺗﺼـﺎوﯾﺮ دوﺑﻌـﺪي ﺗﺒـﺪﯾﻞ ﻣـﯽﮔـﺮدد. ﺑـﺎ اﻋﻤـﺎل دو ﻣﺮﺣﻠﻪ آﻧﺘﺮوﭘﯽ ﮐﺎﭘﻮر ﺑﻪ ﺗﺼﺎوﯾﺮ دوﺑﻌﺪي ﻧﺎﺣﯿﻪ ﺗﻮﻣﻮر ﺑﻪ ﻫﻤﺮاه ﻧﻘﺎﻃﯽ ﮐﻪ ﺳﻄﺢ روﺷﻨﺎﯾﯽ ﺑﺎﻻﺗﺮي ﻧﺴﺒﺖ ﺑﻪ ﻣﻘﺪار آﺳـﺘﺎﻧﻪ دارﻧـﺪ ﺟـﺪا ﻣﯽﺷﻮﻧﺪ. ﺑﺮاي ﺣﺬف ﻧﻘﺎط اﺿﺎﻓﯽ اﺑﺘﺪا ﺑﺎ روي ﻫﻢ ﻗﺮار دادن ﺗﺼﺎوﯾﺮ دوﺑﻌﺪي، ﺗﺼﻮﯾﺮ ﺳـﻪﺑﻌـﺪي ﺳـﺎﺧﺘﻪ ﺷـﺪه، ﺳـﭙﺲ ﺑـﺎ اﺳـﺘﻔﺎده از ﻓﯿﻠﺘﺮ ﻣﻮرﻓﻮﻟـﻮژي ﺳـﻪﺑﻌـﺪي و اﻟﮕـﻮرﯾﺘﻢ اﻧﺒﺎﺷـﺘﻦ داﻧـﻪاي ﻧﺎﺣﯿـﻪ ﺗﻮﻣـﻮر ﺑـﻪ ﺻـﻮرت ﺳـﻪﺑﻌـﺪي اﺳـﺘﺨﺮاج ﻣـﯽﮔـﺮدد. از ﻣﺰاﯾـﺎي روش ﭘﯿﺸﻨﻬﺎدي ﺣﺬف ﻧﻮاﺣﯽ زاﺋﺪ ﺑﺎ ﺣﻔﻆ ﻧﺎﺣﯿﻪ ﺗﻮﻣﻮر و ﭘﻮﺷﺶ ﺗﻤﺎم زواﯾـﺎي ﺗﻮﻣـﻮر در ﺳـﻪ ﺟﻬـﺖ ﻣـﯽﺑﺎﺷـﺪ. ﺑـﺮاي ﻧﺸـﺎن دادن ﮐﺎرآﻣـﺪي روش ﭘﯿﺸﻨﻬﺎدي از ﻣﺠﻤﻮﻋﻪ ﭘﺎﯾﮕﺎه داده BRATS اﺳﺘﻔﺎده ﮔﺮدﯾﺪ ﮐﻪ ﻧﺘﺎﯾﺞ ارزﯾﺎﺑﯽ ﺑﺮاي ﺗﺸﺨﯿﺺ ﺗﻮﻣـﻮر ﺑـﺎ ارزﯾـﺎﺑﯽ ﺿـﺮﯾﺐ ﺗﺸـﺎﺑﻪ، ﺣﺴﺎﺳﯿﺖ و ﺧﺎﺻﯿﺖ ﺑﻪ ﺗﺮﺗﯿﺐ 0٬9407 و 0٬9235 و 0٬999 ﺑﺪﺳﺖ آﻣﺪ ﮐﻪ ﻧﺴﺒﺖ ﺑﻪ روشﻫﺎﯾﯽ ﮐﻪ اراﺋﻪ ﺷﺪه داراي ﻋﻤﻠﮑﺮد ﺑﻬﺘﺮي اﺳﺖ.
چكيده لاتين :
The Brain tumor is one of the most important factors in mortality, so timely and appropriate detection is necessary to treat the tumor. In this study, 3D images are used to detect tumor. 3D images have depth and therefore, blind spots that may be hidden in 2D images can be seen. This paper presents a threshold method using Kapur’s entropy to detect brain tumors in 3D MRI images. In the proposed method, in order to differentiate the tumor area, the images are normalized in three dimensions, which has the advantage that the brightness level of the tumor is brighter than the rest of brain. In the next step, the 3D image is sliced in 3D and converted into 2D images. By applying two steps of Kapur’s entropy to two-dimensional images of the tumor area with points that have a higher brightness level than the threshold value are separated. To remove Additional areas, a 3D image is first made by stacking 2D images on top of each other, and then the 3D area is extracted using a 3D morphology filter and flood-fill algorithm the advantages of the proposed method is the removal of excess areas while preserving the tumor area and covering all angles of the tumor in three dimensions. To show the efficiency of the proposed method, the BRATS database was used. The evaluation results for detecting tumor were evaluated with similarity, sensitivity and specificity coefficients of 0.9407, 0.9235 and 0.999, respectively, which have better performance than the proposed methods.
عنوان نشريه :
ماشين بينايي و پردازش تصوير