شماره ركورد :
1271013
عنوان مقاله :
استخراج ساختمان ها در نواحي شهري مبتني بر داده هاي سري زماني راداري و اپتيكي با استفاده از سامانه گوگل ارث انجين
عنوان به زبان ديگر :
Buildings extraction in urban areas based on the radar and optical time series data using Google Earth Engine
پديد آورندگان :
فرهادي، هادي دانشگاه صنعتي خواجه نصيرالدين طوسي تهران - دانشكده مهندسي نقشه برداري , مناقبي، طيبه پژوهشگاه فضايي ايران , عبادي، حميد دانشگاه صنعتي خواجه نصيرالدين طوسي تهران - دانشكده مهندسي نقشه برداري - گروه فتوگرامتري و سنجش از دور
تعداد صفحه :
21
از صفحه :
43
از صفحه (ادامه) :
0
تا صفحه :
63
تا صفحه(ادامه) :
0
كليدواژه :
سنجش از دور , توسعه فيزيكي شهري , سنتينل- 1و 2 , آستانه گذاري , شاخص هاي طيفي , گوگل ارث انجين
چكيده فارسي :
استخراج اطلاعات دقيق مربوط به موقعيت، تراكم و توزيع ساختمان‌ها در محدوده شهري از اهميت بسيار بالايي برخوردار است كه در كاربردهاي مختلفي مورد استفاده قرار مي‌گيرد. سنجش از دور يكي از كارآمدترين تكنولوژي‌هاي تهيه نقشه است كه در مناطق وسيع، با سرعت بالا، هزينه مقرون به صرفه و با به‌كارگيري داده‌هاي به‌روز مورد استفاده قرار مي‌گيرد. تاكنون روش‌ها و داده‌هاي متعددي براي اين منظور مورد استفاده قرار گرفته است. در اين راستا، در تحقيق حاضر از يك روش نيمه‌خودكار به منظور تهيه نقشه محدوده شهري و ساختمان‌هاي شهر تبريز و از تصاوير ماهواره‌اي سنتينل-1 و 2 در سامانه گوگل ارث انجين استفاده شد. براي اين منظور، بعد از فراخواني تصاوير و اعمال پيش‌پردازش‌هاي لازم در موتور مجازي، نقشه مناطق شهري اوليه و ساختمان‌هايي با پتانسيل بالا از تصاوير سنتينل-1 توليد شد. در مرحله بعد، به‌منظور حذف ويژگي‌هاي مزاحم و استخراج مناطق شهري ثانويه، شاخص‌هاي طيفي از تصاوير سنتنيل-2 استخراج شد. سپس براي آستانه‌گذاري ويژگي‌ها از آستانه‌گذاري هيستوگرام به روش تك مدي استفاده شد. در نهايت، با ادغام نقشه ساختمان‌هاي با پتانسيل بالا و نقشه مناطق شهري ثانويه، نقشه نهايي توليد و مورد ارزيابي قرار گرفت. نتايج حاصل، نشان‌دهنده صحت كلي 90/11 درصد و ضريب كاپاي 0/803 مي‌باشد. براساس مقايسه‌هاي كمّي و كيفي انجام شده، روش پيشنهادي از عملكرد مطلوبي برخوردار مي‌باشد. از مهم‌ترين مزاياي روش پيشنهادي مي‌توان به رايگان بودن داده‌ها و متن‌باز بودن سامانه گوگل ارث انجين اشاره كرد. بنابراين، مي‌توان نتيجه گرفت كه استفاده همزمان از داده‌هاي سنجش از دور راداري و اپتيكي در محيط سامانه گوگل ارث انجين، پتانسيل بسيار بالايي در متمايز كردن ويژگي‌ها و تهيه نقشه ساختمان‌ها دارد.
چكيده لاتين :
Extended Abstract 1- Introduction Remote Sensing (RS), as one of the most efficient mapping technologies, is employed in wide areas due to its speed, cost-effectiveness, monitoring over wide areas and using time series data. So far, several data and methods are used for this purpose. In general, RS active and passive sensors provide useful information in various applications such as building extraction, natural resource management, agricultural monitoring, etc. The extraction of accurate information about the location, density and distribution of buildings in the urban areas is one of the major challenges in the urban study which is used in various applications. In this framework, the monitoring of the urban parameters, such as urban green space, public health, and environmental justice, urban density and so on has been accomplished by radar and optical image processing, in the last three decades. So far, various methods, including Artificial Intelligence (AI), Deep Learning (DL), object-based methods, etc. have been proposed to extract information in the urban areas. However, an important issue is access to the powerful computer hardware to process the time-series images. In such a situation, the use of the Google Earth Engine (GEE) as a web-based RS platform and its ability to perform spatial and temporal aggregations on a set of satellite images has been considered by many researchers. In this research, a semi-automatic method was developed building extraction in Tabriz, northwest of Iran, based on the satellite images using the GEE cloud computing platform. Since accessible data is one of the most important challenges in the use of space RS, in this study, the free Sentinel-1 and sentinel-2 data, which belongs to the European Space Agency (ESA), has been utilized. 2- Materials & Methods 2-1- Study Area The study area is central part of the city of Tabriz East Azerbaijan Province, which is located in northwestern of Iran. 2-2- Data Various data sources have been used in this study, including Sentinel-1, Sentinel-2, and the Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM). In addition, 400 training samples were created using High-Resolution Google Earth Imagery (GEI) in two classes: urban-residential (buildings) and non-residential areas (vegetation, soil, road, water and etc.). 2-3- Methodology The goal of this research is to develop a method for identifying the buildings in an urban area. For this purpose, after importing images and pre-processing them in the GEE Platform, a map of the Primary Urban Areas (PUA) and High-Potential Buildings (HPB) was produced from Sentinel-1 images according to the sensitivity of the radar images to the target physical parameters. Then, in order to remove the annoying features and extract the Secondary Urban Areas (SUA), spectral indices such as Normalized Difference Vegetation Index (NDVI), Green Normalized Difference Vegetation Index (GNDVI), Renormalized Difference Vegetation Index (RDVI), Normalized Difference Water Index (NDWI), Soil Extraction Index (SOEI), Normalized Difference Built-up Index (NDBI), and Build-up Extraction Index (BUEI) were extracted from Sentinel-2 images. Also, the high slope of the area and the mountainous areas was extracted from the SRTM DEM data and used as a mask in the final results. Afterwards, the unimodal histogram thresholding method was used in order to determine the threshold value for each index. Finally, by merging the map of HPB and the map of SUA, the final map was produced and evaluated by other methods. In this research, the proposed method used images from GEI with a very high spatial resolution to validate the generated map. As a result, sampling was carried out using a visual interpretation of GEI in two classes: residential areas (buildings) and non-residential areas. The samples were selected randomly and 400 points were collected for each residential and non-residential class. In the study area, a total of 800 test points were used to evaluate the results of the proposed method. To evaluate the accuracy of the results, the criteria of overall accuracy (OA), kappa coefficient (KC), user accuracy (UA) and producer accuracy (PA) were used. 3- Results & Discussion According to the visual interpretation, all buildings in urban areas with a length and width greater than 10 meters (spatial resolution of the four major bands of Sentinel2) can be extracted using the proposed method in this study, and the results are acceptable in various features. According to the proposed method, annoying features such as vegetation and water body areas were removed from the building identification process with high accuracy, and the accuracy in the study area was improved. The results showed that the OA and KC were 90.11 % and 0.803, respectively. Based on the quantitative and qualitative comparisons, the proposed method had a very satisfying performance. 4- Conclusion Due to the spectral diversity and the presence of various features in urban environments, preparing a map related to it in a large area is extremely difficult. In this regard, the current study presented a very fast semi-automatic method for preparing the urban area map and extracting buildings in Tabriz using Sentinel-1 and Sentinel-2 satellite images as a time series in the GEE platform. One of the most significant benefits of the proposed method is that the data and processing system used in our study is free. Thus, in addition to not having to download large amounts of data, the method presented in the current study has the ability to eliminate many of the limitations of traditional methods, such as classification methods and their requirement for large training samples. The proposed method did not extract the map of buildings using heavy and complex algorithms, which was an important consideration in the discussion of computational cost. Therefore, it can be concluded that the simultaneous use of Radar and optical RS data in the GEE Web-Based platform has a very high potential in distinguishing features and building mapping.
سال انتشار :
1400
عنوان نشريه :
اطلاعات جغرافيايي سپهر
فايل PDF :
8589730
لينک به اين مدرک :
بازگشت