چكيده لاتين :
Extended Abstract
Introduction
. Floods are natural disasters which occurrence causes annual great damage to people and environment around the world. So, specifying flood susceptible land is a necessity to reduce and control destructive impacts. Watershed management implementations could affect runoff volume and flood occurrence. The goal of this study is to apply the combination of Curve Number method and AHP in Arc-GIS to prepare flood susceptibility map and to investigate the role of biological measures in flood susceptibility of the region through this method and statistical tests.
Materials & Methods .For this purpose, Pardisan watershed located in the southern part of Qom city was selected. Ten factors layers viz. drainage density, slope, annual rainfall, distance from river, elevation, flow accumulation, SCS Curve Number, geo infiltration, geomorphology and previous floods were prepared and classified based on flood susceptibility in different scales. Then future Curve Number was determine with assuming the implementation of biological watershed management in different land uses such as rangeland, agriculture, garden and badland. In this study, AHP method in Arc-GIS was used to calculate pairwise comparison and determine the weight of each factor. Overlaying current and future Curve Number layers with nine layers using the weights obtained from the hierarchical analysis method led to the preparation of flood susceptibility maps for pre and post watershed management implementation.
Results & Discussion
Geo infiltration map showed the proportion area of “low”, “and “very low” infiltration classes were 4.46% and 16.87%, respectively while moderate and high infiltration classes were 39.75% and 38.92%. Slope map indicates that 0-2%, 2-5%, 5-15%, 15-35% and 35-60% classes comprise 29.87%, 35%, 30.11%, 4.88% and 0.14% of the studied area, respectively. In this region, South parts were steep whereas; north parts were mild. Distance to river is another factor classified in to four groups of 0-500, 500-1000, 1000-3000 and 3000-6500 meter with 38.86%, 24.32%, 29.63% and 7.19% of the region, respectively. Elevation classified map revealed 45.1% of the region were in 900-1200 meter range whereas; 36.4%, 14.8%, 3.6% and 0.1% were in 1200-1500,1500-1800,1800-2100 and 2100-2400 meter classes, respectively. As can be seen in rainfall map, 25.57% of the region was categorized in 140-160 mm rainfall class while 35.41%, 20.59% and 18.43% of the whole area were classified in 160-180,180-200 and 200-250mm groups. In the region, South parts have more rainfall volume than north. Also, flow accumulation map indicated that 96.5%, 1.97%, 1.07%, 0.24% and 0.22% were classified as 0-1500, 1500-5000, 5000-15000, 15000-25000, 25000-100000 values which high flow accumulation pixel range show high flood susceptibility. Drainage density map represents 10.38%, 14.36%, 56.88% and 18.38% of the studied area were grouped in 0-0.05, 0.05-0.07, 0.07-0.09 and 0.09-0.12 classes. Also, Curve Number (SCS) map for garden, cultivated lands, rangelands and badlands shows that 25.54% of the study area was classified as 15-35 CN value while 36.14%, 0.9% and 37.42% were categorized in 35-50, 50-65 and 65-80 classes before performing biological measures. After biological measures in different uses, 15-35 Curve Number values are observed in 36.6% of the area and 35-50, 50-65, 65-80 classes comprise 32.05%, 29% and 2.35% of the study area, respectively. The geomorphological map shows that the class with the highest score is visible in 68.96% of the area, while the classes with the lower scores are observed in 3.07, 18.34, 9.37, and 0.26% of the region, respectively. The past flood zoning map of the region also shows that 22.41% of the region exist in low susceptibility class, 36.15% of the region locates in the medium susceptibility class and 41.44% is in the high sensitivity class. For AHP approach, the calculated consistency ratio of this study was less than 0.1. Therefore; the compatibility between ten selected factors was acceptable. AHP results showed that the Curve Number factor has the highest weight percentage (27.44) whereas; the geo-infiltration has the lowest weight percentage (3.20). Comparison of flooding classes for pre and post water management implementation shows that high and medium flooding classes will decrease by 7.3 and 39.7% and low and very low susceptibility classes will increase by 22.18 and 24.82 %, respectively due to the implementation of biological watershed management measures. Also, Sign and Wilcoxon statistical tests indicated the existence of significance difference in flood classes’ for pre and after implementing biological watershed management.
Conclusion
Flood susceptibility map provision is a necessity in arid and semi-arid regions due to insufficient vegetation cover. The results of this study indicate positive effects of biological watershed management in decreasing flood vulnerability. These findings can be considered for future planning of the region and help watershed managers for optimal utilization of water and soil resources and reduction of flood damage.