عنوان مقاله :
مدل ﺳﺎزي ﭼﻨﺪ ﻣﻘﯿﺎﺳﯽ ﻧﺎﻧﻮﮐﺎﻣﭙﻮزﯾﺖ ﻫﯿﺒﺮﯾﺪي، ﺑﺎ اﺳﺘﻔﺎده از روشﻫﺎي دﯾﻨﺎﻣﯿﮏ ﻣﻮﻟﮑﻮﻟﯽ، ﻣﯿﮑﺮوﻣﮑﺎﻧﯿﮏ و اﻟﻤﺎن ﻣﺤﺪود
عنوان به زبان ديگر :
Multiscale modeling of hybrid nanocomposites using molecular dynamics, micromechanics, and finite element methods
پديد آورندگان :
خدادادي، علي دانشگاه شهركرد , گلستانيان، حسين دانشگاه شهركرد , آقاداوودي، فرشيد دانشگاه آزاد اسلامي واحد خميني شهر
كليدواژه :
ﻣﺪل ﺳﺎزي ﭼﻨﺪ ﻣﻘﯿﺎﺳﯽ , ﻧﺎﻧﻮﮐﺎﻣﭙﻮزﯾﺖ , دﯾﻨﺎﻣﯿﮏ ﻣﻮﻟﮑﻮﻟﯽ , ﻣﯿﮑﺮوﻣﮑﺎﻧﯿﮏ , اﻟﻤﺎن ﻣﺤﺪود
چكيده فارسي :
در اﯾﻦ ﭘﮋوﻫﺶ، ﻣﺪل ﺳﺎزي ﭼﻨﺪ ﻣﻘﯿﺎﺳﯽ ﺧﻮاص ﻣﮑﺎﻧﯿﮑﯽ ﻧﺎﻧﻮﮐﺎﻣﭙﻮزﯾﺖ ﻫﯿﺒﺮﯾﺪي، ﺑﺎ زﻣﯿﻨﻪ اﭘﻮﮐﺴﯽ و ﺗﻘﻮﯾﺖ ﮐﻨﻨﺪه ﻫﺎي ﻧﺎﻧﻮﻟﻮﻟﻪ ﮐﺮﺑﻨﯽ ﺗﮏ ﺟﺪاره و ﻧﺎﻧﻮذره ﮐﺮﺑﻦ )اﻟﻤﺎس(، اراﯾﻪ ﺷﺪه اﺳﺖ. در اﯾﻦ ﻣﺪل ﺳﺎزي، در ﻣﻘﯿﺎس ﻧﺎﻧﻮ، از روش دﯾﻨﺎﻣﯿﮏ ﻣﻮﻟﮑﻮﻟﯽ و در ﻣﻘﯿﺎس ﻣﯿﮑﺮو و ﻣﺎﮐﺮو، ﺑﺎ در ﻧﻈﺮ ﮔﺮﻓﺘﻦ ﺗﺎﺛﯿﺮ ﻓﺎز ﻣﯿﺎﻧﯽ، از رواﺑﻂ ﺗﺤﻠﯿﻠﯽ ﻣﯿﮑﺮوﻣﮑﺎﻧﯿﮏ و ﺷﺒﯿﻪ ﺳﺎزي اﻟﻤﺎن ﻣﺤﺪود، ﺑﻪ ﺻﻮرت ﺟﺪاﮔﺎﻧﻪ، اﺳﺘﻔﺎده ﺷﺪه اﺳﺖ. اﻧﻄﺒﺎق ﺧﻮﺑﯽ ﺑﯿﻦ ﻧﺘﺎﯾﺞ اﯾﻦ دو روش ﻣﺸﺎﻫﺪه ﺷﺪ. ﻧﺘﺎﯾﺞ ﺑﺪﺳﺖ آﻣﺪه ﻧﺸﺎن ﻣﯽدﻫﺪ ﮐﻪ اﺳﺘﻔﺎده ﻫﻤﺰﻣﺎن از ﻧﺎﻧﻮﺗﻘﻮﯾﺖ ﮐﻨﻨﺪه ﻫﺎي ﮐﺮﺑﻨﯽ ﻧﺎﻧﻮﻟﻮﻟﻪ و ﻧﺎﻧﻮذره، ﻧﺎﻧﻮﮐﺎﻣﭙﻮزﯾﺖ ﻫﯿﺒﺮﯾﺪ، ﺧﻮاص ﻣﻄﻠﻮب ﺗﺮي را ﺑﻪ دﻧﺒﺎل دارد.
چكيده لاتين :
In this paper, multiscale modeling of Epoxy-based hybrid nanocomposites was performed. Single-walled carbon nanotube and carbon nanoparticle (diamond) were used as reinforcements and the elastic behavior of hybrid nanocomposite was investigated. In the multiscale modeling, at the nanoscale and pico-second time range, molecular dynamics method was used to make an accurate model of the interaction between the nano-scale reinforcements and the polymer matrix to predict the interface behavior more realistically. At the micro and macro scales, micromechanical models were used to predict the elastic properties of the nanocomposites, incorporating the effects of interface behavior. Finite element method was also used to check the accuracy of the results obtained at the macro scale. First, pure thermoset polymer with 75% crosslinking ratio was simulated using molecular dynamics method. Then two nanocomposites, one consisting of a single-walled carbon nanotube and another one containing a carbon nanoparticle (diamond) were simulated to obtain equivalent fiber mechanical properties. Next, a micromechanical model was developed for hybrid nanocomposite using the equivalent fiber and pure thermoset polymer mechanical properties. In addition, the results obtained from the molecular dynamics simulations, along with a correction coefficient were employed in the micromechanical models and finite element simulations. Finally, micromechanical multiscale modeling results were compared with finite element multiscale modeling results and a good agreement was observed. Results suggest that the use of two types of nano-reinforcement together, hybrid nanocomposite, improves nanocomposite mechanical properties.
عنوان نشريه :
مهندسي مكانيك ايران