پديد آورندگان :
محمودي، محمدحسين دانشگاه صنعتي نوشيرواني - دانشكده ي مهندس عمران , داودي، محمدرضا دانشگاه صنعتي نوشيرواني - دانشكده مهندسي عمران , يوسف پور، حسين دانشگاه صنعتي نوشيرواني - دانشكده مهندسي عمران
كليدواژه :
ميكروسيليس , خاكستربادي , آتش , حرارت بالا , مقاومت پسماند
چكيده فارسي :
قرارگيري بتن در معرض دماي بالا در شرايط مختلفي اتفاق ميافتد كه از جملهي آنها ميتوان به آتش سوزي در ساختمان ها و يا كاربرد بتن در سازه هايي مانند نيروگاه ها اشاره نمود. در چنين شرايطي، تخمين مقاومت پسماند بتن پس از آتش سوزي و يا دستيابي به نوعي از بتن كه با تجربه ي سيكل هاي متعدد دمايي دچار تغييرات كمي در مشخصات شود اهميت كاربردي فراوان دارد. هدف از مطالعه ي حاضر بررسي آزمايشگاهي اثر كاربرد ميكروسيليس و خاكستر بادي به عنوان دو ماده ي افزودني معدني بر روي مقاومت پسماند بتن پس از قرار گرفتن در معرض حرارت بالا ميباشد. با كاربرد 19 طرح اختلاط، مجموعه اي از 570 نمونه ي استوانه اي با نسبت هاي آب به سيمان بين 0.35 و 0.65، درصد جايگزيني سيمان بين 0 و 15 براي ميكروسيليس و بين 0 و 30 براي خاكستر بادي ساخته شد. اين نمونه ها در كوره ي الكتريكي قرار گرفته و مقاومت فشاري و كششي آنها در شرايط كنترل و بعد از قرارگيري در دماهاي 200، 400، و 600 درجه در زمان بندي هاي مختلف 2 ساعته، 12 ساعته و 24 ساعته ارزيابي گرديد. نتايج نشان داد كه مقاومت فشاري و كششي نمونه هاي قرار گرفته در معرض دماي 200 درجه دچار افت مقاومت قابل توجهي نگرديد، ولي كاهش مقاومت در اثر قرارگيري در معرض دماي 400 درجه و 600 درجه به وضوح مشاهده شد. كاربرد ميكروسيليس منجر به تغيير محسوسي در مقاومت فشاري پسماند نمونه ها نگرديد ولي مقاومت پسماند كششي نمونهها را كاهش داد. كاربرد خاكستر بادي نيز در جايگزيني نزديك به 30 درصد منجر به افزايش مقاومت فشاري پسماند شده اما مقاومت كششي پسماند نمونه ها را كاهش داد.
چكيده لاتين :
A significant number of engineering structures around the world are exposed to fire on a daily basis.
The most important effect of fire on the structure is elevated temperatures, which may reach more than
1000 degrees Celsius and cause not only thermal stresses and deformations but also diminished
mechanical properties of materials comprising the structure. Fire-related collapses have been observed
in numerous structural fires. However, many reinforced concrete structures exposed to fire do not
demonstrate notable apparent damage and survive despite having experienced elevated temperatures
before the fire is put out. Estimating the residual strength of such structures is of critical importance
when deciding whether such structures can be safely used after fire. Moreover, in many industrial
applications, there is a need to concrete that can withstand repeated long-term cycles of elevated
temperatures without diminished mechanical properties. The objective of this paper is to investigate
the effects of silica fume and fly ash as two widely used supplementary cementitious materials on the
residual strength of concrete exposed to elevated temperatures and evaluate while such materials can
be of benefit in improving the strength retention in case of heat exposure. Using 19 mix designs, a
series of 570 concrete cylinders was fabricated using different water to cement ratios (0.35, 0.5, and
0.65), silica fume replacement ratios (0, 10, and 15 percent), and fly ash replacement ratios (0, 10, 20,
and 30 percent). The specimens were cured in water for 56 days, after which they were placed in a ratecontrolled large-scale electrical furnace, and their residual compressive and tensile strengths were
measured before heat, and after heat exposure for 2-, 12-, and 24-hour heating cycles with temperatures
reaching 200, 400, and 600 degrees Celsius. To eliminate the risk of explosive spalling, all specimens
were preheated at a temperature of 100 degrees for 24 hours before the main heating cycle. Results
showed that the compressive and tensile strengths did not reduce noticeably after exposure to 200
degrees but demonstrated a significant drop after exposure to 400- and 600-degree cycles. In many
cases, the residual compressive and tensile strengths of specimens were found to be smaller than those
predicted in previous studies. The square root equation widely used in the literature was found to
provide a reasonable lower-bound estimate of the residual splitting tensile strength of concrete from
the residual compressive strength; however, a linear trend was identified to provide a more accurate
estimate for the results of this study. Moreover, due to less scatter, the splitting tensile strength was
found to be a better indicator of heat damage in the structure than the compressive strength. The use of
silica fume did not result in a meaningful trend in the residual compressive strength but reduced the
residual tensile strength of specimens. Fly ash, on the other hand, could increase the residual
compressive strength of the specimens but reduces the residual tensile strength. The results suggest that
generally, and with few exceptions, these two supplementary cementitious materials are not
recommendable choices for improving the strength retention of concrete in case of heat exposure.