شماره ركورد :
1392922
عنوان مقاله :
Investigating the antimicrobial and antibiofilm potential of Melittin peptide against Escherichia coli and Staphylococcus aureus
پديد آورندگان :
Rouhi ، Arezou Ferdowsi University of Mashhad - Faculty of Agriculture - Department of Food Science and Technology , Falah ، Fereshteh Ferdowsi University of Mashhad - Faculty of Agriculture - Department of Animal Science , Azghandi ، Marjan Ferdowsi University of Mashhad - Faculty of Agriculture - Department of Animal Science , Alizadeh Behbahani ، Behrooz University of Khuzestan - Faculty of Animal Science and Food Technology, Agricultural Sciences and Natural Resources - Department of Food Science and Technology , Tabatabaei yazdi ، Farideh Ferdowsi University of Mashhad - Faculty of Agriculture - Department of Food Science and Technology , A. Ibrahim ، Salam North Carolina Agricultural and Technical State University , Vasiee ، Alireza Research Institute of Food Science and Technology (RIFST) - Department of Food Safety and Quality Control
از صفحه :
192
تا صفحه :
205
كليدواژه :
Melittin peptide , Antibiofilm , Pathogenicity , Scanning electron microscope , Melittin peptide , Antibiofilm , Pathogenicity , Scanning electron microscope
چكيده فارسي :
Escherichia coli and Staphylococcus aureus are pathogens that have the ability to form biofilms and cause disease in food products. Due to the fact that the enterotoxins produced by these two pathogens remain in a wide range of temperature, pH and saline conditions, they cause severe infections in humans. Melittin is a natural peptide derived from bee venom that can show its antimicrobial and anti-biofilm potential through disrupting the membrane of bacterial cells. For this purpose, in this study, the antimicrobial effect of this peptide on Gram positive and negative bacteria was investigated and its minimum inhibitory concentration (MIC) was determined as 100 µg/mL and 300 µg/mL, respectively. Also, the scanning electron microscope images confirmed the antimicrobial effect of the peptide on these two bacteria. Peptide melittin caused wrinkling, deformation and creation of holes in the cell membrane of treated bacteria, compared to the control sample. On the other hand, the results of the biofilm inhibition test showed that the addition of the peptide at a concentration of 2MIC completely prevented the biofilm formation of S. aureus prevented, while this value was equal to 91.00 ± 2.82 in E. coli bacteria. Also, the increase in peptide concentration caused an increase in the destruction of adult biofilms of both bacteria. On the other hand, this peptide decreased the invasion and adhesion of these two bacteria to HT-29 and Caco-2 cells by reducing the mobility of pathogens. Therefore, according to the obtained results, melittin peptide can be a suitable alternative to chemical disinfectants that are harmful to the environment.
عنوان نشريه :
علوم و صنايع غذايي ايران
عنوان نشريه :
علوم و صنايع غذايي ايران
لينک به اين مدرک :
بازگشت