عنوان مقاله :
پهنه بندي اطلاعات بارندگي با استفاده از روش هاي آمار كلاسيك و زمين آمار و مقايسه با شبكه عصبي مصنوعي
عنوان به زبان ديگر :
Estimating Spatial Distribution of Rainfall Using Statistical and
Geostatistical Methods and Comparison with Artificial Networks
پديد آورندگان :
ميثاقي ، فرهاد نويسنده Misaghi, F. , محمدي، كورش نويسنده دانشكده كشاورزي- دانشگاه تربيت مدرس ،تهران Moharnmadi, R
اطلاعات موجودي :
فصلنامه سال 1385
كليدواژه :
}GIS{ , زمين آمار , شبكه هاي عصبي مصنوعي , درون يابي
چكيده لاتين :
In most hydrological and water resources studies, rainfall estimation is an important
parameter. Different interpolation methods such as nearest neighbors, inverse distance,
minimum curvature etc. can be used to show the distribution of rainfall over the
watershed. Since the number of rain gauges are usually insufficient and there are high
uncertainties in measurements, the estimated rainfall is not accurate. In the last few
decades, geostatistics have been developed and applied in many engineering fields
successfully. In this research, spatial distribution of rainfall over the Maroon Watershed
has been estimated using statistical and geostatistical methods in GIS environment. On
the other hand, artificial neural networks (ANN) have been applied as an interpolation
tool and in combination with geostatistical methods. Results proved that geostatistical
methods especially Kriging and Co-Kriging have better ability for estimation.
عنوان نشريه :
مجله علمي كشاورزي - دانشگاه شهيد چمران اهواز
عنوان نشريه :
مجله علمي كشاورزي - دانشگاه شهيد چمران اهواز
اطلاعات موجودي :
فصلنامه با شماره پیاپی سال 1385
كلمات كليدي :
#تست#آزمون###امتحان