شماره ركورد :
416929
عنوان مقاله :
پيش بيني ميزان تراوايي سنگ مخزن با استفاده از داده هاي پتروفيزيكي
عنوان به زبان ديگر :
Permeability Prediction of the Reservoir Formation by Using Petrophysical Information
پديد آورندگان :
احمدي، مرتضي نويسنده دانشكده فني و مهندسي- دانشگاه تربيت مدرس تهران Ahmadi, M , يزديان، علي نويسنده دانشكده برق و كامپيوتر-دانشگاه تربيت مدرس تهران Yazdian, A. , صايمي، محسن نويسنده دانشگاه تربيت مدرس تهران Saemi, M.
اطلاعات موجودي :
دوفصلنامه سال 1385 شماره 2
رتبه نشريه :
علمي پژوهشي
تعداد صفحه :
10
از صفحه :
43
تا صفحه :
52
كليدواژه :
شبكه عصبي , تراوايي , نمودارهاي چاه پيمايي , مخازن هيدروكربوري
چكيده لاتين :
Permeability, or flow capacity, is the ability of porous media to transmit fluid. To understand reservoir performance and in case of reservoir management and development requires accurate knowledge of permeability. The permeability of the formation is usually determined from the cores and/or well tests. It should be noted that cores and well test data are often only available from few wells in a reservoir while the logs are available from the majority of the wells. Therefore, the evaluation of permeability from well log data represents a significant technical as well as economic advantage. Many fundamental problems remain unsolved by most predictive models. This paper introduces the use of an improved neural network trained by a Back Propagation learning algorithm to provide solution for the permeability prediction from well log data. An Iranian offshore gas field is located in the Persian Gulf, has been selected as the study area in this paper. Well log data are available on substantial number of wells. Core samples are also available from a few wells. It was shown that the neural network system is the most effective method in predicting permeability from well logs.
سال انتشار :
1385
عنوان نشريه :
م‍ه‍ن‍دس‍ي‌ م‍ع‍دن‌
عنوان نشريه :
م‍ه‍ن‍دس‍ي‌ م‍ع‍دن‌
اطلاعات موجودي :
دوفصلنامه با شماره پیاپی 2 سال 1385
كلمات كليدي :
#تست#آزمون###امتحان
لينک به اين مدرک :
بازگشت