شماره ركورد
430320
عنوان مقاله
تحليل تراز برخورد معادله بنجامين -بونا-ماهوني-برگرزدر (1+1) بعد
عنوان به زبان ديگر
Level Crossing Analysis Of The Benjamin-Bona-Mahony-Burgers
Equation in (1+1) Dimension
پديد آورندگان
سلطاني، محمدرضا نويسنده دانشگاه آزاد اسلامي علوم و تحقيقات تهران,; Soltani, M.R. , مسعودي، اميرعلي نويسنده دانشگاه الزهرا,; Masoudi , A.A.
اطلاعات موجودي
فصلنامه سال 1388 شماره 71
رتبه نشريه
فاقد درجه علمي
تعداد صفحه
8
از صفحه
27
تا صفحه
34
كليدواژه
تراز برخورد , معادله بنجامين -بونا-ماهوني-برگرز
چكيده لاتين
Introduction: In this paper we are planing to study the mean positive slopes which produced when the fluctuations of the velocity of a turbluent fluid is crossed by the level ux - ux =a in the Benjamin-Bona-Mahony-Burgers (BBM-B) equation. Here we just consentrate to the high Reynolde number limit and do the level crossing analysis where a ^ 0, p ^ 0 . (before the appearance of the schocks)
Over aim in this paper is to show how the quantity v+a counts the fluctuations of the velocity
in the Benjamin-Bona-Mahony-Burgers tutbulence.
Aim: we calculated the mean positive slopes in the Benjamin-Bona-Mahony-Burgers equation in (1+1) dimensions using stochastic process methods.
Materials and Method: In the Benjamin-Bona-Mahony-Burgers equation in (1+1) dimensions with stochastic force when the fluctuation of the velocity of a turbulent fluid is crossed by the level ux - ux =a we calculated the mean positive slopes crossing by the level
ux - ux =a
Results: In this paper we study of Benjamin-Bona-Mahony-Burgers equation in (1+1) dimensions with Gaussian correlated in space also we determined the average frequency of a positive slope when a certain level crosses the velocity in the BBM-B equation. The integral representation of v+a was given for BBM-B equation in the zero dispersion limit before the creation of shocks and it was shown that the velocity dependence of the v+a is Gaussian after all we have found that the total creation number of positive slopes
for the BBM-b equation in the zero dispersion limit and before the creation of shocks scale
1
as 12.
Conclusion: In this paper we study of Benjamin-Bona-Mahony-Burgers equation in (1+1) dimensions with Gaussian correlated in space also we determined the average frequency of a positive slope when a certain level crosses the velocity in the BBM-B equation . The integral representation of v+a was given for BBM-B equation in the zero dispersion limit before the
creation of shocks and it was shown that the velocity dependence of the v+a is Gaussian after
all we have found that the total creation number of positive slopes for the BBM-b equation in the zero dispersion limit and before the creation of shocks scale as
سال انتشار
1388
عنوان نشريه
پژوهش هاي نوين در رياضي
عنوان نشريه
پژوهش هاي نوين در رياضي
اطلاعات موجودي
فصلنامه با شماره پیاپی 71 سال 1388
كلمات كليدي
#تست#آزمون###امتحان
لينک به اين مدرک