عنوان مقاله :
مطالعه تطبيقي روش هاي ARIMA و شبكه هاي عصبي مصنوعي در پيش بيني نياز داخلي برق كشور
عنوان به زبان ديگر :
Comparative study of ARIMA and Artificial Neural Network Methods for Iran Electricity Forecasting
پديد آورندگان :
احمدي، علي محمد نويسنده دانشگاه تربيت مدرس,; Ahmadi, A.M.
اطلاعات موجودي :
فصلنامه سال 1388 شماره 41
كليدواژه :
نياز داخلي برق , شبكه هاي عصبي , ARIMA , پيش بيني
چكيده لاتين :
Electricity demand is growing very fast in Iran and it is important to forecast its
future demand and its monthly variation accurately.
Artificial Neural Network (ANN) is a powerful tool for nonlinear models for
forecasting and it was used to estimate monthly electricity demand in this study. In
this paper, we compared the Non-linear ANN model with ARIMA linear model to
estimate monthly electricity demand for a priod of 3 years. Using MSE. RMSE.
NMSE, MHE. MAPE and R2 indicatorss, our results show that ANN forecasting
model is superior to ARIMA in terms of less error coefficient and high explanatory
ability.
عنوان نشريه :
پژوهش هاي اقتصادي ايران
عنوان نشريه :
پژوهش هاي اقتصادي ايران
اطلاعات موجودي :
فصلنامه با شماره پیاپی 41 سال 1388
كلمات كليدي :
#تست#آزمون###امتحان