شماره ركورد :
440685
عنوان مقاله :
برچسب زني نقش معنايي جملات فارسي با رويكرد يادگيري مبتني بر حافظه
عنوان به زبان ديگر :
Semantic Role Labeling of Persian Sentences with Memory-Based Learning Approach
پديد آورندگان :
-، - گردآورنده - Kamel Ghalibaf, A
اطلاعات موجودي :
دوفصلنامه سال 1388 شماره 11
رتبه نشريه :
علمي پژوهشي
تعداد صفحه :
10
از صفحه :
13
تا صفحه :
22
كليدواژه :
تجزيه سطحي نحوي , تجزيه سطحي معنايي , برچسب زني معنايي , پردازش زبان طبيعي , يادگيري مبتني بر حافظه
چكيده لاتين :
Extracting semantic roles is one of the major steps in representing text meaning. It refers to finding the semantic relations between a predicate and syntactic constituents in a sentence. In this paper we present a semantic role labeling system for Persian, using memory-based learning model and standard features. Our proposed system implements a two-phase architecture to first identify the arguments by a shallow syntactic parser or chunker, and then to label them with appropriate semantic role, with respect to the predicate of the sentence. We show that good semantic parsing results, can be achieved with a small 1300-sentence training set. In order to extract features, we developed a shallow syntactic parser which divides the sentence into segments with certain syntactic units. The input data for both systems is drawn from RCISP1 corpus which is hand-labeled with required syntactic and semantic information. The results show an F-score of 81.6% on argument boundary detection task and an F-score of 87.4% on semantic role labeling task using Gold-standard parses, an overall system performance shows an F-score of 73.8% on complete semantic role labeling system i.e. boundary plus classification.
سال انتشار :
1388
عنوان نشريه :
پردازش علائم و داده ها
عنوان نشريه :
پردازش علائم و داده ها
اطلاعات موجودي :
دوفصلنامه با شماره پیاپی 11 سال 1388
كلمات كليدي :
#تست#آزمون###امتحان
لينک به اين مدرک :
بازگشت