عنوان مقاله :
ارايهي يك سامانهي هوشمند با تلفيقي از درخت رگرسيوني و نقشهي خودسازمانده بهينهشده براي تقسيمبندي بهينهي مشتريان
عنوان فرعي :
A HYBRID INTELLIGENT SYSTEM BY COMBINING OPTIMIZED REGRESSION TREE AND SELF-ORGANIZING MAP FOR OPTIMAL CUSTOMER SEGMENTATION
پديد آورندگان :
سروش، عليرضا نويسنده , , بحرينينژاد ، اردشير نويسنده Bahreininejad, A , امين ناصري ، محمدرضا نويسنده Amin-Naseri, M.R
اطلاعات موجودي :
دوفصلنامه سال 1391 شماره 0
كليدواژه :
انتخاب ويژگي , درخت رگرسيوني , تقسيمبندي مشتريان , نقشه خودسازمانده , مديريت ارتباط با مشتري
چكيده فارسي :
تقسيمبندي بهينهي مشتريان برمبناي ويژگيهاي مرتبط ميتواند به توسعهي استراتژيهاي بازاريابي دقيقتر بهمنظور صرف كاراتر منابع كمك كند. اما ايجاد سامانهي تقسيمبندي مشتريان كه علاوهبر پيچيدگي كم از قابليت تقسيمبندي بهينهيي برخوردار باشد، بهدليل حجم زياد ويژگيها كاري بسيار مشكل است. هدف اين نوشتار، ارايهي يك سامانهي تلفيقي هوشمند مبتني بر درخت رگرسيوني و نقشهي خودسازمانده بهينهسازي شده است كه از نظر محاسباتي كارا و دقيق باشد. نتايج نشان ميدهد كه درخت رگرسيوني 93% از ويژگيها را در حالت بهينه حذف ميكند و لذا به كاهش قابل توجه هزينهي محاسبات ميانجامد. بهعلاوه، نتايج اعتبارسنجي نشان ميدهد كه اين سامانه با دقت قابل توجهي خوشهها را تفكيك كرده است و بدين طريق ميتوان منابع بازاريابي را جهت جذب مشتريان مشابه با مشتريان بهترين خوشهها صرف كرد.
چكيده لاتين :
Customer segmentation (CS) is one of the most important aspects of customer relationship management. Machine learning (ML) algorithms for solving pattern recognition problems are often only successful if the available data are preprocessed based on appropriate feature selection. The feature selection process can be considered as a problem of global combinatorial optimization in ML. It can help to reduce the total number of features and to remove irrelevant and redundant data. Feature selection has received considerable attention in various areas where thousands of features are available. The main goal of feature selection is to identify a subset of features that are most informative, and, therefore, most predictive, for a given response variable. Finding an optimal feature subset is usually hard to control and many problems related to feature selection have been shown to be NP-hard. Successful implementation of feature selection not only provides important information for segmentation, but also reduces computational and analytical efforts for the analysis of high-dimensional data. Optimal segmentation based on related features can help to develop marketing strategies more accurately through spending resources effectively. However, the creation of a customer segmentation system (CSS) that has, simultaneously, both low complexity and optimal segmentation abilities, is a difficult task due to the large number of possible features. Although segmentation methods are popularly used, they cannot be useful unless irrelevant features are removed, because irrelevant features will present inappropriate CS and create poor results. Thus, the purpose of this paper is to present a hybrid intelligent CSS (HICSS) that is computationally efficient and optimal. At first, a pruned regression tree (PRT) is designed for optimal feature selection. However, performing appropriate feature selection is a hard job and there is no general applicable method available. Then, a self-organizing map (SOM) is developed to determine the optimal number of features based on the Davies-Bouldin Index. To measure the model, an insurance company dataset has been employed. The obtained results show that the PRT removes 93% of available features in this way, considerably reducing computation costs. In addition, the validation results show that the HICSS based on SOM has differentiated clusters very accurately. So, customers of the considered product have been segmented into 24 clusters and can simply spend marketing resources to attract similar customers to the best cluster customers.
عنوان نشريه :
مهندسي صنايع و مديريت شريف
عنوان نشريه :
مهندسي صنايع و مديريت شريف
اطلاعات موجودي :
دوفصلنامه با شماره پیاپی 0 سال 1391
كلمات كليدي :
#تست#آزمون###امتحان